Photogating in Low Dimensional Photodetectors

Advanced Science - Tập 4 Số 12 - 2017
Hehai Fang1,2, Weida Hu1,2
1State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
2University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China

Tóm tắt

AbstractLow dimensional materials including quantum dots, nanowires, 2D materials, and so forth have attracted increasing research interests for electronic and optoelectronic devices in recent years. Photogating, which is usually observed in photodetectors based on low dimensional materials and their hybrid structures, is demonstrated to play an important role. Photogating is considered as a way of conductance modulation through photoinduced gate voltage instead of simply and totally attributing it to trap states. This review first focuses on the gain of photogating and reveals the distinction from conventional photoconductive effect. The trap‐ and hybrid‐induced photogating including their origins, formations, and characteristics are subsequently discussed. Then, the recent progress on trap‐ and hybrid‐induced photogating in low dimensional photodetectors is elaborated. Though a high gain bandwidth product as high as 109 Hz is reported in several cases, a trade‐off between gain and bandwidth has to be made for this type of photogating. The general photogating is put forward according to another three reported studies very recently. General photogating may enable simultaneous high gain and high bandwidth, paving the way to explore novel high‐performance photodetectors.

Từ khóa


Tài liệu tham khảo

10.1063/1.118399

10.1038/nphoton.2008.247

10.1038/nphoton.2017.37

10.1016/S1350-4495(02)00140-8

10.1016/0020-0891(75)90019-6

10.1063/1.339468

10.1063/1.354252

10.1038/nphoton.2009.184

10.1038/nnano.2014.215

10.1002/adom.201500237

10.1002/adfm.201603886

10.1002/smll.201700894

10.1073/pnas.0502848102

10.1021/ar9700365

10.1038/29954

10.1038/nmat1390

10.1021/acs.nanolett.6b00104

10.1038/nphoton.2010.186

10.1126/science.1235547

10.1039/C5CS00106D

10.1021/nn501226z

10.1021/nl903868w

10.1103/PhysRevB.89.235319

10.1103/PhysRevB.87.165409

10.1126/science.1211384

10.1021/nl202318u

10.1038/nnano.2011.243

10.1021/acs.nanolett.6b03374

10.1021/acs.nanolett.6b01977

10.1166/jnn.2010.2157

10.1038/nnano.2012.60

10.1038/nnano.2013.206

10.1073/pnas.86.18.6959

10.1063/1.108213

10.1063/1.2357413

10.1016/j.solidstatesciences.2010.04.034

10.1021/nl502339q

10.1002/adma.201403664

10.1038/ncomms9589

10.1038/nature21050

10.1002/adma.201202220

10.1038/am.2015.137

10.1002/adfm.201603605

10.1364/OPTICA.3.001066

Neamen D. A., 2011, Semiconductor Physics and Devices: Basic Principles 4th Edition

Bahaa M. C. T., 1991, Fundamentals of Photonics

10.1021/acs.nanolett.5b02523

10.1021/acs.nanolett.5b02559

10.1063/1.106819

10.1126/science.1176706

10.1002/adom.201200071

10.1038/ncomms6404

10.1063/1.119673

10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W

10.1039/c0jm02778b

10.1002/adfm.201603152

10.1038/ncomms2830

10.1002/adma.201301244

10.1088/0957-4484/27/44/445201

10.1002/adma.201506352

10.1002/adma.201700463

10.1063/1.1408274

10.1039/c1jm00035g

10.1103/PhysRevB.81.045306

10.1021/acs.nanolett.5b01962

10.1126/science.1062340

10.1021/nl070111x

10.1063/1.4816246

10.1021/nl0500306

10.1088/0957-4484/19/46/465501

10.1038/nmat3256

10.1021/nn500201g

10.1021/nl902611f

10.1063/1.3193540

10.1021/acs.nanolett.6b02860

10.1103/PhysRevLett.66.2243

10.1103/PhysRevLett.76.3626

10.1103/PhysRevB.73.195321

10.1063/1.4916517

10.1063/1.4821185

10.1021/acs.jpclett.5b01686

10.1038/nnano.2015.112

10.1038/nphoton.2015.23

10.1002/adma.201402471

10.1021/acsphotonics.6b00391

10.1021/acsphotonics.6b00299

10.1038/nphoton.2017.75

10.1038/srep03826

10.1002/adma.201402271

10.1021/nn506920z

10.1038/nnano.2014.31

10.1186/s11671-017-1827-0

10.1038/nnano.2012.88

10.1038/srep03533

10.1038/ncomms14311

10.1021/acs.nanolett.5b01755

10.1063/1.2927371

10.1002/adfm.201601346

10.1038/nphoton.2010.40

10.1038/nnano.2014.167

10.1038/nnano.2015.227

10.1002/adfm.201504408

10.1002/adma.201503340

10.1038/nnano.2009.292

10.1038/nnano.2013.100

10.1021/nl500817g

10.1021/nn503521c

10.1021/nl400107k

10.1021/am402550s

10.1002/smll.201403508

10.1021/nl503857r