Photoelectrochemistry of manganese oxide/mixed phase titanium oxide heterojunction

New Journal of Chemistry - Tập 44 Số 8 - Trang 3514-3523
Mehdi Khosravi1,2,3, Hadi Feizi1,2,3, Behzad Haghighi4,5,1,3, Suleyman I. Allakhverdiev6,7,8,9,10,11, Mohammad Mahdi Najafpour12,13,1,14
1Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
2Institute for Advanced Studies in Basic Sciences (IASBS)
3Zanjan
4Department of Chemistry
5Department of Chemistry, College of Sciences, Shiraz 71454, Shiraz University, Iran
6Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
7Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
8Department of Molecular and Cell Biology, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russia
9Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
10Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia,
11Russia
12Center of Climate Change and Global Warming
13Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
14Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

Tóm tắt

Photoelectrochemistry of manganese oxide/mixed phase titanium oxide was studied.

Từ khóa


Tài liệu tham khảo

Nowotny, 2005, Int. J. Hydrogen Energy, 30, 521, 10.1016/j.ijhydene.2004.06.012

Hisatomi, 2014, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D

Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175

Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326

Lewis, 2007, Science, 315, 798, 10.1126/science.1137014

Heller, 1981, Acc. Chem. Res., 14, 154, 10.1021/ar00065a004

Ramachandran, 1998, Int. J. Hydrogen Energy, 23, 593, 10.1016/S0360-3199(97)00112-2

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Turner, 1999, Science, 285, 687, 10.1126/science.285.5428.687

Ge, 2017, Adv. Sci., 4, 1600152, 10.1002/advs.201600152

Ge, 2016, J. Mater. Chem. A, 4, 6772, 10.1039/C5TA09323F

Ali, 2018, RSC Adv., 8, 30125, 10.1039/C8RA06517A

Yan, 2015, ACS Sustainable Chem. Eng., 3, 779, 10.1021/acssuschemeng.5b00154

Ge, 2017, Int. J. Hydrogen Energy, 42, 8418, 10.1016/j.ijhydene.2016.12.052

He, 2012, Ind. Eng. Chem. Res., 51, 11841, 10.1021/ie300510n

Kang, 2015, Chem. Rev., 115, 12839, 10.1021/acs.chemrev.5b00498

Zhou, 2017, ACS Catal., 7, 3210, 10.1021/acscatal.6b03709

Bessekhouad, 2003, J. Photochem. Photobiol., A, 157, 47, 10.1016/S1010-6030(03)00077-7

Oskam, 2003, J. Phys. Chem. B, 107, 1734, 10.1021/jp021237f

Sugimoto, 1987, Adv. Colloid Interface Sci., 28, 65, 10.1016/0001-8686(87)80009-X

Anderson, 1988, J. Membr. Sci., 39, 243, 10.1016/S0376-7388(00)80932-1

Barringer, 1985, Langmuir, 1, 414, 10.1021/la00064a005

Jean, 1986, Langmuir, 2, 251, 10.1021/la00068a025

Kormann, 1988, J. Phys. Chem., 92, 5196, 10.1021/j100329a027

Livage, 1988, Prog. Solid State Chem., 18, 259, 10.1016/0079-6786(88)90005-2

Chae, 2003, Chem. Mater., 15, 3326, 10.1021/cm030171d

Yang, 2003, J. Colloid Interface Sci., 260, 82, 10.1016/S0021-9797(02)00190-X

Yang, 2001, Mater. Sci. Eng., C, 15, 183, 10.1016/S0928-4931(01)00274-0

Yang, 2002, J. Mater. Res., 17, 2197, 10.1557/JMR.2002.0323

Rehan, 2011, CrystEngComm, 13, 3725, 10.1039/c0ce00781a

Gong, 2001, J. Mater. Res., 16, 3331, 10.1557/JMR.2001.0457

Mor, 2005, Nano Lett., 5, 191, 10.1021/nl048301k

Cai, 2005, J. Mater. Res., 20, 230, 10.1557/JMR.2005.0020

Zwilling, 1999, Electrochim. Acta, 45, 921, 10.1016/S0013-4686(99)00283-2

Mor, 2006, Sol. Energy Mater. Sol. Cells, 90, 2011, 10.1016/j.solmat.2006.04.007

Paulose, 2006, J. Phys. Chem. B, 110, 16179, 10.1021/jp064020k

Mor, 2003, J. Mater. Res., 18, 2588, 10.1557/JMR.2003.0362

Bauer, 2006, Electrochem. Commun., 8, 1321, 10.1016/j.elecom.2006.05.030

Seifried, 2000, Chem. Vap. Deposition, 6, 239, 10.1002/1521-3862(200010)6:5<239::AID-CVDE239>3.0.CO;2-Q

Ayllón, 1999, J. Mater. Sci. Lett., 18, 1319, 10.1023/A:1006657510154

Pradhan, 2003, J. Cryst. Growth, 256, 83, 10.1016/S0022-0248(03)01339-3

Okuyama, 1986, AIChE J., 32, 2010, 10.1002/aic.690321211

Wu, 2004, J. Phys. Chem. B, 108, 3377, 10.1021/jp0361935

Wang, 2005, J. Am. Chem. Soc., 127, 10982, 10.1021/ja051240n

Wu, 2005, Chem. Phys. Lett., 413, 490, 10.1016/j.cplett.2005.07.113

Wu, 2005, J. Cryst. Growth, 281, 384, 10.1016/j.jcrysgro.2005.04.018

Ohno, 2001, J. Catal., 203, 82, 10.1006/jcat.2001.3316

Bickley, 1991, J. Solid State Chem., 92, 178, 10.1016/0022-4596(91)90255-G

Datye, 1995, J. Solid State Chem., 115, 236, 10.1006/jssc.1995.1126

Ohno, 2001, J. Phys. Chem. B, 105, 2417, 10.1021/jp003211z

Hurum, 2003, J. Phys. Chem. B, 107, 4545, 10.1021/jp0273934

Li, 2007, Chem. Mater., 19, 1143, 10.1021/cm061817f

Luo, 2015, Chem. Mater., 27, 6, 10.1021/cm5035112

Shen, 2006, Chem. Phys. Lett., 419, 464, 10.1016/j.cplett.2005.11.109

Ferreira, 2004, Science, 303, 1831, 10.1126/science.1093087

Suga, 2014, Nature, 517, 99, 10.1038/nature13991

Kern, 2018, Nature, 563, 421, 10.1038/s41586-018-0681-2

Najafpour, 2016, Chem. Rev., 116, 2886, 10.1021/acs.chemrev.5b00340

Najafpour, 2015, Coord. Chem. Rev., 285, 65, 10.1016/j.ccr.2014.11.001

Roger, 2017, Nat. Rev. Chem., 1, 0003, 10.1038/s41570-016-0003

Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v

Cao, 1994, J. Am. Chem. Soc., 116, 5334, 10.1021/ja00091a044

Chen, 1997, Catal. Today, 33, 205, 10.1016/S0920-5861(96)00119-8

Pinaud, 2011, J. Phys. Chem. C, 115, 11830, 10.1021/jp200015p

Sakai, 2005, J. Phys. Chem. B, 109, 9651, 10.1021/jp0500485

Yu, 2010, Catal. Commun., 11, 1125, 10.1016/j.catcom.2010.06.005

Yu, 2010, Thin Solid Films, 519, 357, 10.1016/j.tsf.2010.07.105

Yang, 2013, J. Catal., 304, 86, 10.1016/j.jcat.2013.04.014

Xu, 2014, Mater. Res. Bull., 59, 32, 10.1016/j.materresbull.2014.06.025

Yin, 2014, Phys. Chem. Chem. Phys., 16, 11289, 10.1039/C4CP00384E

Bhandary, 2016, RSC Adv., 6, 35239, 10.1039/C6RA03984G

Trzciński, 2016, Appl. Surf. Sci., 385, 199, 10.1016/j.apsusc.2016.05.115

Liu, 2018, ACS Appl. Energy Mater., 1, 814, 10.1021/acsaem.7b00267

Moniz, 2015, Energy Environ. Sci., 8, 731, 10.1039/C4EE03271C

Kudo, 1998, Catal. Lett., 53, 229, 10.1023/A:1019034728816

Martin, 2013, Energy Environ. Sci., 6, 3380, 10.1039/c3ee42260g

Martin, 2014, Angew. Chem., Int. Ed., 53, 9240, 10.1002/anie.201403375

Khaselev, 1998, Science, 280, 425, 10.1126/science.280.5362.425

Khosravi, 2019, New J. Chem., 43, 6989, 10.1039/C9NJ00961B

Khosravi, 2019, New J. Chem., 43, 4049, 10.1039/C8NJ06162A

Paulose, 2007, J. Phys. Chem. C, 111, 14992, 10.1021/jp075258r

Gaul, 1993, J. Chem. Educ., 70, 176, 10.1021/ed070p176

Sang, 2014, Chem. Rev., 114, 9283, 10.1021/cr400629p

Fujishima, 2008, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001

Omomo, 2003, J. Am. Chem. Soc., 125, 3568, 10.1021/ja021364p

Hsu, 2012, J. Mater. Chem., 22, 2733, 10.1039/C1JM14355G

Najafpour, 2017, Catal. Sci. Technol., 7, 3499, 10.1039/C7CY00215G

Najafpour, 2013, Dalton Trans., 42, 16683, 10.1039/c3dt52304g

Najafpour, 2013, Dalton Trans., 42, 12173, 10.1039/c3dt51345a

Indra, 2013, Angew. Chem., Int. Ed., 52, 13206, 10.1002/anie.201307543

Kumar, 2000, Thin Solid Films, 358, 122, 10.1016/S0040-6090(99)00722-1

Ching, 1997, Inorg. Chem., 36, 883, 10.1021/ic961088d