Photoelectrochemical sensor based on carboxylated graphdiyne co-sensitized TiO2 for sensitive detection of dopamine

Materials Today Chemistry - Tập 26 - Trang 101143 - 2022
Y.Z. Xie1, Y. Wang1, Y. Ma1, J.S. Ye1
1Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guang Zhou 510000, PR China

Tài liệu tham khảo

Sakamoto, 2019, The accelerating world of graphdiynes, Adv. Mater., 31 Ma, 2020, Graphdiyne oxide: a new carbon nanozyme, Chem. Commun. (Camb), 56, 5115, 10.1039/D0CC01840F Guo, 2020, Electron hopping by interfacing semiconducting graphdiyne nanosheets and redox molecules for selective electrocatalysis, J. Am. Chem. Soc., 142, 2074, 10.1021/jacs.9b13678 Gao, 2017, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater., 29 Zhang, 2020, Graphdiyne-based flexible photodetectors with high responsivity and detectivity, Adv. Mater., 32 Zhao, 2021, Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries, Chem. Eng. J., 413, 10.1016/j.cej.2020.127486 Wang, 2020, Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection, Nat. Commun., 11, 4465, 10.1038/s41467-020-18267-1 Zhou, 2020, Controllable synthesis of graphdiyne nanoribbons, Angew Chem. Int. Ed. Engl., 59, 4908, 10.1002/anie.201916518 Zhou, 2015, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc., 137, 7596, 10.1021/jacs.5b04057 Li, 2010, Architecture of graphdiyne nanoscale films, Chem. Commun. (Camb), 46, 3256, 10.1039/b922733d Si, 2020, Graphdiyne coupled with g-C3N4/NiFe-layered double hydroxide, a layered nanohybrid for highly efficient photoelectrochemical water oxidation, Adv. Mater. Interfac., 7, 10.1002/admi.201902083 Yang, 2019, Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion, ACS Appl. Mater. Interfaces, 11, 2608, 10.1021/acsami.8b01823 Guo, 2020, Graphdiyne:Structure of fluorescent quantum dots, Angew Chem. Int. Ed. Engl., 59, 16712, 10.1002/anie.202006891 Lowe, 2014, Thiol-yne ‘click’/coupling chemistry and recent applications in polymer and materials synthesis and modification, Polymer, 55, 5517, 10.1016/j.polymer.2014.08.015 Zhao, 2018, Photoelectrochemical immunoassays, Anal. chem., 90, 615, 10.1021/acs.analchem.7b04672 Yan, 2018, A sensitive signal-on photoelectrochemical sensor for tetracycline determination using visible-light-driven flower-like CN/BiOBr composites, Biosens. Bioelectron., 111, 74, 10.1016/j.bios.2018.03.054 Qileng, 2018, Construction of CdS/B-TiO2 nanorods photoelectrochemical immunosensor for the detection of microcystin-LR using SiO2@G-quadruplex as multi-amplifier, Sensor. Actuator. B Chem., 254, 727, 10.1016/j.snb.2017.07.164 Li, 2018, Addressable TiO2 nanotubes functionalized paper-based cyto-sensor with photocontrollable switch for highly-efficient evaluating surface protein expressions of cancer cells, Anal. chem., 90, 13882, 10.1021/acs.analchem.8b02849 Li, 2018, Editable TiO2 nanomaterial-modified paper in situ for highly efficient detection of carcinoembryonic antigen by photoelectrochemical method, ACS Appl. Mater. Interfaces, 10, 14594, 10.1021/acsami.8b03632 Meng, 2019, Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst, Appl. Catal. B Environ., 244, 340, 10.1016/j.apcatb.2018.11.018 Gao, 2018, Paper-based origami photoelectrochemical sensing platform with TiO2/Bi4NbO8Cl/Co-pi cascade structure enabling of bidirectional modulation of charge carrier separation, Anal. chem., 90, 14116, 10.1021/acs.analchem.8b04662 Zhang, 2018, Rapid sensitive sensing platform based on yolk-shell hybrid hollow sphere for detection of ethanol, Sensor. Actuator. B Chem., 256, 479, 10.1016/j.snb.2017.10.064 Yu, 2018, Integrated obstacle microstructures for gas-liquid separation and flow switching in microfluidic networks, Sensor. Actuator. B Chem., 256, 735, 10.1016/j.snb.2017.09.207 Wang, 2018, A cathodic “signal-on” photoelectrochemical sensor for Hg2+ detection based on ion-exchange with ZnS quantum dots, Sensor. Actuator. B Chem., 254, 910, 10.1016/j.snb.2017.07.149 Wise, 2020, Dopamine and addiction, Annu. Rev. Psychol., 71, 79, 10.1146/annurev-psych-010418-103337 Yang, 2020, Dopamine D3 receptor: a neglected participant in Parkinson Disease pathogenesis and treatment?, Ageing Res. Rev., 57, 10.1016/j.arr.2019.100994 Castelaín, 2013, Effect of click-chemistry approaches for graphene modification on the electrical, thermal, and mechanical properties of polyethylene/graphene nanocomposites, Macromolecules, 46, 8980, 10.1021/ma401606d Hong, 2007, Covalent binding of α-chymotrypsin on the magnetic nanogels covered by amino groups, J. Mol. Catal. B Enzym., 45, 84, 10.1016/j.molcatb.2006.11.009 Egawa, 2009, Sugar response of boronic acid-substituted azobenzene dye-modified polymer, Mater. Sci. Eng. C, 29, 115, 10.1016/j.msec.2008.05.014 Evrard, 2008, Electrochemical functionalization of carbon surfaces by aromatic azide or alkyne molecules: a versatile platform for click chemistry, Chemistry, 14, 9286, 10.1002/chem.200801168 Egawa, 2011, Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives, Mater. Sci. Eng. C, 31, 1257, 10.1016/j.msec.2011.05.007 Jia, 2017, Synthesis and properties of 2D carbon-graphdiyne, Acc. Chem. Res., 50, 2470, 10.1021/acs.accounts.7b00205 Tan, 2018, Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor, Sensor. Actuator. B Chem., 256, 282, 10.1016/j.snb.2017.09.187 Rizwan, 2018, AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen, Biosens. Bioelectron., 107, 211, 10.1016/j.bios.2018.02.037