Cảm biến quang điện hóa học của hydrogen peroxide tại thế hoạt động bằng không sử dụng điện cực thích hợp với BiVO4 microrods pha tạp fluorine

Microchimica Acta - Tập 184 - Trang 799-806 - 2017
Zhenzhong Yu1, Shuzhen Lv1, Rongrong Ren1, Guoneng Cai1, Dianping Tang1
1Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou, People’s Republic of China

Tóm tắt

Các tác giả mô tả một phương pháp quang điện hóa học (PEC) hiệu quả cao để xác định hydrogen peroxide (H2O2). Microrods BiVO4 được tổng hợp bằng phương pháp thủy nhiệt và được lắng đọng trên kính oxit thiếc pha tạp fluorine (FTO) mà hoạt động như một điện cực làm việc. Kính hiển vi điện tử quét, nhiễu xạ rơ đồ bột X-ray và phổ Raman đã được sử dụng để đặc trưng hóa các microrods. Khi chiếu sáng bằng ánh sáng nhìn thấy, các lỗ điện tử được tạo ra trong các microrods đang thu hút electron từ H2O2 để sản xuất một photocurrent tại thế hoạt động 0 V so với Ag/AgCl. Dưới điều kiện tối ưu, photocurrent tăng theo nồng độ H2O2 trong khoảng từ 50 μmol·L−1 đến 1.5 mmol·L−1, và giới hạn phát hiện là 8.5 μmol·L−1 (tại 3σ). Sự lặp lại và độ chính xác trung gian ≤6.6% đã được thực hiện ở các mức H2O2 là 0.1, 0.5 và 1.0 mmol·L−1. Phương pháp đã được áp dụng để xác định H2O2 trong các mẫu sữa tiệt trùng và cho kết quả thỏa mãn. Khi phương pháp làm việc ở thế bằng không, photocurrent có thể được đo bằng các thiết bị đơn giản như ampe kế số, và điều này sẽ cho phép các trạm làm việc điện hóa đắt tiền được thay thế trong tương lai.

Từ khóa


Tài liệu tham khảo

Liu Y, Sun G, Jiang C, Zheng X, Zheng L, Li C (2014) Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles. Microchim Acta 181:63–70 Winterbourn C (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286 Bortolozzi R, von Gradowski S, Ihmels H, Schafer K, Viola G (2014) Selective ratiometric detection of H2O2 in water and in living cells with boronobenzob quinolizinium derivatives. Chem Commun 50:8242–8245 Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J, Li M (2013) Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85:10289–10295 Yu C, Wang Q, Qian D, Li W, Huang Y, Chen F, Bao N, Gu H (2016) An ITO electrode modified with electrodeposited graphene oxide and gold nanoclusters for detecting the release of H2O2 from bupivacaine-injured neuroblastoma cells. Microchim Acta 183:3167–3175 Tarvin M, McCord B, Mount K, Miller M (2011) Analysis of hydrogen peroxide field samples by HPLC/FD and HPLC/ED in DC mode. Forensic Sci Int 209:166–172 Wang Z, Song H, Zhao H, Lv Y (2013) Graphene-amplified electrogenerated chemiluminescence of CdTe quantum dots for H2O2 sensing. Luminescence 28:259–264 Zhuang J, Tang D, Lai W, Xu M, Tang D (2015) Target-induced nano-enzyme reactor mediated hole-trapping for high-throughput immunoassay based on a split-type photoelectrochemical detection strategy. Anal Chem 87:9473–9480 Zheng Y, Liang W, Yuan Y, Xiong C, Xie S, Wang H, Chai Y, Yuan R (2016) Wavelength-resolved simultaneous photoelectrochemical bifunctional sensor on single interface: a newly in vitro approach for multiplexed DNA monitoring in cancer cells. Biosens Bioelectron 81:423–430 Ge S, Li W, Yan M, Song X, Yu J (2015) Photoelectrochemical detection of tumor markers based on a CdS quantum dot/ZnO nanorod/Au@Pt-paper electrode 3D origami immunodevice. J Mater Chem B 3:2426–2432 Jin D, Xu Q, Yu L, Hu X (2015) Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125(Ti)/TiO2. Microchim Acta 182:1885–1892 Han Q, Wang K, Xu L, Yan X, Zhang K, Chen X, Wang Q, Zhang L, Pei R (2015) N-doped TiO2 based visible light activated label-free photoelectrochemical biosensor for detection of Hg2+ through quenching of photogenerated electrons. Analyst 140:4143–4147 Zhao W, Han Y, Zhu Y, Zhang N, Xu J, Chen H (2015) DNA labeling generates a unique amplification probe for sensitive photoelectrochemical immunoassay of HIV-1 p24 antigen. Anal Chem 87:5496–5499 Gong J, Fang T, Peng D, Li A, Zhang L (2015) A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprinted polymer-functionalized nanoarchitectured hybrid of AgI-BiOI composite. Biosens Bioelectron 73:256–263 Cao F, Xiong J, Wu F, Liu Q, Shi Z, Yu Y, Wang X, Li L (2016) Enhanced photoelectrochemical performance from rationally designed anatase/rutile TiO2 heterostructures. ACS Appl Mater Interface 8:12239–12245 Li H, Li J, Xu Q, Hu X (2011) Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos. Anal Chem 83:9681–9686 Khan M, Khan M, Cho M (2016) CdS-graphene nanocomposite for efficient visible-light-driven photocatalytic and photoelectrochemical applications. J Colloid Interface Sci 482:221–232 Sahai S, Ikram A, Rai S, Dass S, Shrivastav R, Satsangi V (2014) CdSe quantum dots sensitized nanoporous hematite for photoelectrochemical generation of hydrogen. Int J Hydrogen Energ 39:11860–11866 Shao M, Ning F, Wei M, Evans D, Duan X (2014) Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv Funct Mater 24:580–586 Qamar M, Drmosh Q, Ahmed M, Qamaruddin M, Yamani Z (2015) Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film. Nanoscale Res Lett 10:1–6 Li R, Han H, Zhang F, Wang D, Li C (2014) Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energ Environ Sci 7:1369–1376 Zhao Z, Li Z, Zou Z (2011) Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys Chem Chem Phys 13:4746–4753 Ke D, Peng T, Ma L, Cai P, Jiang P (2008) Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions. Appl Catal A 350:111–117 Ribeiro F, Moraes F, Pereira E, Marken F, Mascaro L (2015) New application for the BiVO4 photoanode: a photoelectroanalytical sensor for nitrite. Electrochem Commun 61:1–4 Zhou L, Wang W, Zhang L, Xu H, Zhu W (2007) Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property. J Phys Chem C 111:13659–13664 Yu J, Zhang Y, Kudo A (2009) Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process. J Solid State Chem 182:223–228 Hernandez S, Gerardi G, Bejtka K, Fina A, Russo N (2016) Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. Appl Catal B 190:66–74 Tu W, Lei J, Wang P, Ju H (2011) Photoelectrochemistry of free-base-porphyrin-functionalized zinc oxide nanoparticles and their applications in biosensing. Eur Chem J 17:9440–9447 Lin Y, Chen X, Lin Y, Zhou Q, Tang D (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182:1803–1809 Yang Y, Fu R, Yuang J, Wu S, Zhang J, Wang H (2015) Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures. Microchim Acta 182:2241–2249 Wang B, Ju P, Zhang D, Han X, Zheng L, Yin X, Sun C (2016) Colorimetric detection of H2O2 using flower-like Fe2(MoO4)3 microparticles as a peroxidase mimic. Microchim Acta Doi. doi:10.1007/s00604-016-1955-8 Jahanian M, Akbarinejad A, Alizadeh N (2017) Design of a sensing platform with dual performance for detection of hydrogen peroxide and Fe3+ based on a new fluorescent oligo N-phenylpyrrole derivative. Sens Actu B 240:971–978 Sharma V, Mobin S (2017) Cytocompatible peroxidase mimic CuO:graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation. Sens Acut B 240:338–348 Liu Y, Liu X, Guo Z, Hu Z, Xue Z, Lu X (2017) Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively. Biosens Bioelectron 87:101–107 Thanh T, Balamurugan J, Lee S, Kim N, Lee J (2016) Novel porous gold-palladium nanoalloy network- supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing. Biosens Bioelectron 85:669–678 Boujakhrout A, Diez P, Sanchez A, Martinez-Ruiz P, Pingarron J, Villalonga J (2016) Gold nanoparticles- decorated silver-bipyridine nanobelts for the construction of mediatorless hydrogen peroxide biosensor. J Colloid Interf Sci 482:105–111 Fang X, Xu X, Hu X, Li Z, Wang G (2016) Native carbon nanodots as fluorescent probe for assays based on the use of glucose oxidase or horseradish peroxidase. Microchim Acta 183:2761–2770 Yao Z, Yang X, Wu F, Wu W, Wu F (2016) Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium (IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchim Acta 183:2799–2806 Wu Q, Sheng Q, Zheng J (2016) Nonenzymatic amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with a sandwich-structured nanocomposite consisting of silver nanoparticles. Microchim Acta 183:1943–1951 Yang Z, Qi C, Zheng X, Zheng J (2016) Sensing hydrogen peroxide with a glassy carbon electrode modified with silver nanoparticles, AlOOH and reduced graphene oxide. Microchim Acta 183:1131–1136