Oxi hóa quang điện của progesterone trong nước bằng cách sử dụng anot titan phủ carbon và chất xúc tác vanadi pentoxit: động lực học loại bỏ steroid

Salman Farissi1, Utukuri Gopi1, Gara Ajith1, Harikrishnan Palasseri1, Vijayalekshmi Padmachandran Aiswriya1, Anbazhagi Muthukumar1, Muthukumar Muthuchamy1
1Department of Environmental Science, Central University of Kerala, Kasaragod, India

Tóm tắt

Progesterone (PGT) là một hormone steroid được sản xuất tự nhiên bởi phụ nữ mang thai. Sự ra đời của ngành dược phẩm đã tạo điều kiện cho việc sản xuất tổng hợp PGT như một loại thuốc cho các vấn đề liên quan đến thai kỳ. Như một hệ quả của việc sản xuất tổng hợp và tỉ lệ sử dụng PGT cao, chúng đã trở thành một chất ô nhiễm mới nổi trong các nguồn nước trên toàn cầu. Các phương pháp xử lý nước thải thông thường không đủ khả năng để loại bỏ các chất ô nhiễm steroid. Do đó, nghiên cứu hiện tại đã cố gắng phân hủy 10 mg L−1 PGT trong nước bằng phương pháp quang xúc tác (PC) tiếp theo là oxy hóa điện xúc tác (EC) sử dụng vanadi pentoxit (V2O5) và anot titan phủ carbon (C/Ti). Các nghiên cứu tối ưu đã xác định biện pháp chiếu xạ UV-C, pH 5, lượng chất xúc tác 50 mg L−1, 180 phút PC tiếp theo là 300 phút EC, và mật độ dòng điện 69 mA cm−2 giúp loại bỏ 96% COD và 71,5% TOC. Các nghiên cứu so sánh cho thấy PC(UV-C) + EC hiệu quả hơn 50% và 25% so với oxy hóa điện hóa và oxy hóa điện xúc tác trong việc loại bỏ TOC. Sự tiền xử lý bằng quang xúc tác đã giảm mức tiêu thụ dòng điện của quá trình này xuống 23 mA cm−2. Các nghiên cứu khối phổ độ phân giải cao (HRMS) đã được sử dụng để đề xuất con đường phân hủy liên quan đến các cơ chế hydroxyl hóa, demethyl hóa, dehydroxyl hóa và decarboxyl hóa.

Từ khóa


Tài liệu tham khảo

Bulletti C, Bulletti FM, Sciorio R, Guido M (2022) Progesterone: the key factor of the beginning of life. Int J Mol Sci 23(22):14138. https://doi.org/10.3390/ijms232214138 Siren H, Tavaststjerna T, Riekkola ML (2021) Capillary electrophoresis and liquid chromatography for determining steroids in concentrates of purified water from Päijänne Lake. J Chromatogr A 1649:462233. https://doi.org/10.1007/s11356-017-9060-z Šauer P, Stará A, Golovko O, Valentová O, Bořík A, Grabic R, Kroupová HK (2018) Two synthetic progestins and natural progesterone are responsible for most of the progestagenic activities in municipal wastewater treatment plant effluents in the Czech and Slovak republics. Water Res 137:64–71. https://doi.org/10.1016/j.watres.2018.02.065 Yazdan MM, Kumar R, Leung SW (2022) The environmental and health impacts of steroids and hormones in wastewater effluent, as well as existing removal technologies: a review. Ecologies 3(2):206–224. https://doi.org/10.3390/ecologies3020016 Liang J, Luo Y, Li B, Liu S, Yang L, Gao P, Feng L, Liu Y, Du Z, Zhang L (2022) Removal efficiencies of natural and synthetic progesterones in hospital wastewater treated by different disinfection processes. Front Environ Sci Eng 16(10):126. Liu SS, Chen J, Zhang JN, Liu YS, Hu LX, Chen XW, Liu S, Xu XR, Ying GG (2020) Microbial transformation of progesterone and dydrogesterone by bacteria from swine wastewater: degradation kinetics and products identification. Sci Total Environ 701:134930. Hubinger JC (2015) Determination of estriol, estradiol, estrone, and progesterone in cosmetic products. J Cosmet Sci 66(2):113–128 Liu S, Ying GG, Liu YS, Peng FQ, He LY (2013) Degradation of norgestrel by bacteria from activated sludge: comparison to progesterone. Environ Sci Technol 47(18):10266–10276. https://doi.org/10.1021/es304688g Cui X, Shu H, Wang L, Chen G, Han J, Hu Q, Bashir K, Luo Z, Chang C, Zhang J, Fu Q (2021) Methacrylic functionalized hybrid carbon nanomaterial for the selective adsorption and detection of progesterone in wastewater. Environ Sci Pollut Res 28:62306–62320. Esmaeeli F, Gorbanian SA, Moazezi N (2017) Removal of estradiol valerate and progesterone using powdered and granular activated carbon from aqueous solutions. Int J Environ Res 11:695–705. Ifelebuegu AO, Ukpebor J, Nzeribe-Nwedo B (2016) Mechanistic evaluation and reaction pathway of UV photo-assisted fenton-like degradation of progesterone in water and wastewater. Int J Environ Sci Technol 13:2757–2766. Gamarra-Güere CD, Dionisio D, Santos GO, Lanza MR, de Jesus Motheo A (2022) Application of Fenton, photo-fenton and electro-fenton processes for the methylparaben degradation: a comparative study. J Environ Chem Eng 10(1):106992. AlAani H, Hashem S, Karabet F (2017) Photocatalytic (UV-A/TiO2) and photolytic (UV-A) degradation of steroid hormones: ethinyl estradiol, levonorgestrel, and progesterone. Int J Chem Tech Res 10:1061–1070 Joseita dos Santos Costa M, dos Santos Costa G, Estefany Brandão Lima A, Longo G, Santos Cavalcante E, da Silva Santos L (2018) Photocurrent response and progesterone degradation by employing WO3 films modified with platinum and silver nanoparticles. ChemPlusChem. https://doi.org/10.1002/cplu.201800534 de Vidales MJ, Barba S, Saez C, Cañizares P, Rodrigo MA (2014) Coupling ultraviolet light and ultrasound irradiation with conductive-diamond electrochemical oxidation for the removal of progesterone. Electrochim Acta 140:20–26. https://doi.org/10.1016/j.electacta.2014.02.118 Nienhauser AB, Ersan MS, Lin Z, Perreault F, Westerhoff P, Garcia-Segura S (2022) Boron-doped diamond electrodes degrade short-and long-chain per-and polyfluorinated alkyl substances in real industrial wastewaters. J Environ Chem Eng 10(2):107192. https://doi.org/10.1016/j.jece.2022.107192 Khyzhun OY, Strunskus T, Grünert W, Wöll C (2005) Valence band electronic structure of V2O5 as determined by resonant soft X-ray emission spectroscopy. J Electron Spectrosc Relat Phenom 149(1–3):45–50. https://doi.org/10.1016/j.elspec.2005.07.002 Pokkiladathu H, Farissi S, Sakkarai A, Muthuchamy M (2022) Degradation of bisphenol A: a contaminant of emerging concern, using catalytic ozonation by activated carbon impregnated nanocomposite-bimetallic catalyst. Environ Sci Pollut Res 29(48):72417–72430. https://doi.org/10.1007/s11356-022-19513-3 Pokkiladathu H, Farissi S, Muthukumar A, Muthuchamy M (2022) A novel activated carbon-based nanocomposite for the removal of bisphenol-A from water via catalytic ozonation: efficacy and mechanisms. Res Chem 4:100593. https://doi.org/10.1016/j.rechem.2022.100593 Baird J, Carter B, Cave K, Dupont D, General P, King C, Plummer R, Varewyck A (2013) Gaining insights about water: the value of surveys in first nations communities to inform water governance. Indigenous Policy Journal 23(4) Radjenovic J, Sedlak DL (2015) Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol 49(19):11292–11302. https://doi.org/10.1021/acs.est.5b02414 Chi H, Wan J, Ma Y, Wang Y, Ding S, Li X (2019) Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater. J Hazard Mater 377:163–171. https://doi.org/10.1016/j.jhazmat.2019.05.081 Li H, Wan J, Ma Y, Wang Y (2016) Synthesis of novel core–shell Fe0@ Fe3O4 as heterogeneous activator of persulfate for oxidation of dibutyl phthalate under neutral conditions. Chem Eng J 301:315–324. https://doi.org/10.1016/j.cej.2016.04.147 Li H, Wan J, Ma Y, Wang Y, Chen X, Guan Z (2016) Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: mechanism, performance, and stability. J Hazard Mater 318:154–163. https://doi.org/10.1016/j.jhazmat.2016.06.058 Sopaj F, Rodrigo MA, Oturan N, Podvorica FI, Pinson J, Oturan MA (2015) Influence of the anode materials on the electrochemical oxidation efficiency. application to oxidative degradation of the pharmaceutical amoxicillin. Chem Eng J 262:286–294. https://doi.org/10.1016/j.cej.2014.09.100 Deng D, Wu X, Li M, Qian S, Tang B, Wei S, Zhang J (2020) Electrochemical degradation of three phthalate esters in synthetic wastewater by using a Ce-doped Ti/PbO2 electrode. Chemosphere 259:127488. https://doi.org/10.1016/j.chemosphere.2020.127488 Xu JM, Chou SH, Zhang Y, Kumar M, Shen SY (2021) Degradation of dibutyl phthalate plasticizer in water by high-performance IrO2-Ta2O5/Ti electrocatalytic electrode. Catalysts 11(11):1368. https://doi.org/10.3390/catal11111368 Wang G, Zhang Q, Chen Q, Ma X, Xin Y, Zhu X, Ma D, Cui C, Zhang J, Xiao Z (2019) Photocatalytic degradation performance and mechanism of dibutyl phthalate by graphene/TiO2 nanotube array photoelectrodes. Chem Eng J 358:1083–1090. Farissi S, Ramesh S, Gado AA, Tejomurtula P, Muthukumar A, Muthuchamy M (2023) Electrochemical oxidation of diethyl phthalate at two dimensional graphite sheet electrodes: optimization and analysis of degradation in water with HRMS. J Appl Electrochem 15:1–5. Li H, Zhu X, Jiang Y, Ni J (2010) Comparative electrochemical degradation of phthalic acid esters using boron-doped diamond and pt anodes. Chemosphere 80(8):845–851. https://doi.org/10.1016/j.chemosphere.2010.06.006 Sajid MM, Shad NA, Javed Y, Khan SB, Zhang Z, Amin N, Zhai H (2020) Preparation and characterization of vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf Interfaces 19:100502. https://doi.org/10.1016/j.surfin.2020.100502 Yadav AA, Hunge YM, Kang SW, Fujishima A, Terashima C (2023) Enhanced photocatalytic degradation activity using the V2O5/RGO composite. Nanomaterials 13(2):338. https://doi.org/10.3390/nano13020338 Alhaddad M, Shawky A, Zaki ZI (2022) Photocatalytic oxidative desulfurization of thiophene by exploiting a mesoporous V2O5–ZnO nanocomposite as an effective photocatalyst. Catalysts 12(9):933. https://doi.org/10.3390/catal12090933 Wang Q, Zhang Y, Zheng J, Hu T, Meng C (2017) Synthesis, structure, optical and magnetic properties of interlamellar decoration of magadiite using vanadium oxide species. Microporous Mesoporous Mater 244:264–277. https://doi.org/10.1016/j.micromeso.2016.10.046 Iordanova R, Dimitriev Y, Dimitrov V, Kassabov S, Klissurski D (1996) Glass formation and structure in the V2O5–Bi2O3–Fe2O3 glasses. J Non-cryst Solids 204(2):141–150. https://doi.org/10.1016/S0022-3093(96)00416-4 Cullity BD, Freda A (1958) Quantitative method for the determination of fiber texture. J Appl Phys 29(1):25–30. https://doi.org/10.1063/1.1722936 Uddin J (ed) (2012) Macro to nano spectroscopy. BoD–Books on Demand Periyasamy S, Muthuchamy M (2018) Electrochemical oxidation of paracetamol in water by graphite anode: effect of pH, electrolyte concentration and current density. J Environ Chem Eng 6(6):7358–7367. https://doi.org/10.1016/j.jece.2018.08.036 Garcia-Munoz P, Lopez-Maxias C, Guerra-Rodríguez S, Carbajo J, Casas JA, Rodriguez-Chueca J (2022) Photocatalytic activation of peroxymonosulfate using ilmenite (FeTiO3) for Enterococcus faecalis inactivation. J Environ Chem Eng 10(5):108231. https://doi.org/10.1016/j.jece.2022.108231 Kim A, Kalita G, Kim JH, Patel R (2021) Recent development in vanadium pentoxide and carbon hybrid active materials for energy storage devices. Nanomaterials 11(12):3213. https://doi.org/10.3390/nano11123213 Hosseinzadeh N, Habibzadeh S, Halladj RA (2023) Novel Ternary Ti-V-Bi oxide photoelectrocatalyst in advanced oxidation process. J Alloys Compd https://doi.org/10.1016/j.jallcom.2023.171064 Mena E, Rey A, Beltrán FJ (2018) TiO2 photocatalytic oxidation of a mixture of emerging contaminants: a kinetic study independent of radiation absorption based on the direct-indirect model. Chem Eng J 339:369–380. https://doi.org/10.1016/j.cej.2018.01.122 Farissi S, Ramesh S, Muthuchamy M, Muthukumar A (2022) Biodegradation and photocatalysis of pharmaceuticals in wastewater. In: Development in wastewater treatment research and processes. Elsevier, pp 69–97. https://doi.org/10.1016/B978-0-323-85657-7.00007-9 Xiong J, Xu H, Yin X, Yang B, Petropoulos E, Xue L, Yang L, He S (2023) Visible-light driven tetracycline hydrochloride degradation by nano-lanthanum hydroxide modified carbon nitride: performance, mechanism, and application in real wastewater treatment. Water Res Technol Environ Sci. https://doi.org/10.1039/D3EW00233K