Liệu pháp quang động với nanomedicine thông minh

Archives of Pharmacal Research - Tập 43 - Trang 22-31 - 2020
Jiyoung Kim1, Young-um Jo1, Kun Na1,2
1Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea
2Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Republic of Korea

Tóm tắt

Trong vài thập kỷ qua, nhu cầu lâm sàng về việc sử dụng liệu pháp quang động (PDT) đã tăng lên đáng kể. Đặc biệt, PDT chủ yếu được áp dụng để điều trị ung thư, và hầu hết các chất nhạy sáng (PSs) đã được phát triển nhằm điều trị ung thư. Những lợi thế của PDT, chẳng hạn như tính xâm lấn tối thiểu và điều trị tại chỗ thông qua bức xạ ánh sáng tại chỗ, đã mở rộng khả năng điều trị cho nhiều loại bệnh khác nhau. Do đó, PDT đã được ứng dụng lâm sàng trong việc điều trị nhiều bệnh lý (ví dụ: ung thư, mụn trứng cá và thoái hóa điểm vàng liên quan đến tuổi tác). Tuy nhiên, PS, thành phần chính của PDT, bộc lộ một số hạn chế như độ hòa tan thấp, sinh khả dụng thấp, và thiếu tính chọn lọc đối với tổn thương khi sử dụng như một tác nhân trị liệu. Do đó, nhiều dự án nghiên cứu đã được thực hiện để phát triển các PS thông minh. Để tăng cường hiệu quả điều trị và giảm thiểu tác dụng phụ ở mô bình thường cùng một lúc, việc đưa PS vào các hệ thống phân phối quy mô nano đang được phát triển. Bài tổng quan này cung cấp một giải thích toàn diện về PDT trong nanomedicine thông minh, điều này đã được ứng dụng trong học thuật và lâm sàng để điều trị nhiều loại bệnh lý khác nhau.

Từ khóa

#liệu pháp quang động #thuốc nhạy sáng #nanomedicine #điều trị ung thư #ứng dụng lâm sàng

Tài liệu tham khảo

Abbas M, Zou Q, Li S, Yan X (2017) Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv Mater 29:1605021. https://doi.org/10.1002/adma.201605021 Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281. https://doi.org/10.3322/caac.20114 Barr H, Dix A, Kendall C, Stone N (2001) The potential role for photodynamic therapy in the management of upper gastrointestinal disease. Aliment Pharmacol Ther 15:311–321. https://doi.org/10.1046/j.1365-2036.2001.00936.x Baskaran R, Lee J, Yang S-G (2018) Clinical development of photodynamic agents and therapeutic applications. Biomater Res 22:1–8. https://doi.org/10.1186/s40824-018-0140-z Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838. https://doi.org/10.1021/cr900300p Chan W, Lam D, Lai T, Tam B, Liu D, Chan C (2003) Choroidal vascular remodelling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin: a novel treatment at the primary disease level. Br J Ophthalmol 87:1453–1458. https://doi.org/10.1136/bjo.87.12.1453 Chang H-I, Yeh M-K (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomed 7:49. https://doi.org/10.2147/IJN.S26766 Cheung CMG, Lai TY, Ruamviboonsuk P, Chen S-J, Chen Y, Freund KB, Gomi F, Koh AH, Lee W-K, Wong TY (2018) Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management. Ophthalmology 125:708–724. https://doi.org/10.1016/j.ophtha.2017.11.019 Choi JH, Lee YJ, Kim D (2017) Image-guided nanomedicine for cancer. J Pharm Investig 47:51–64. https://doi.org/10.1007/s40005-016-0297-1 Christie JG, Kompella UB (2008) Ophthalmic light sensitive nanocarrier systems. Drug Discov Today 13:124–134. https://doi.org/10.1016/j.drudis.2007.12.005 Daniell M, Hill J (1991) A history of photodynamic therapy. ANZ J Surg 61:340–348. https://doi.org/10.1111/j.1445-2197.1991.tb00230.x Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380. https://doi.org/10.1038/nrc1071 Fabian I, Stacey A, Papastefanou V, Al Harby L, Arora A, Sagoo M, Cohen V (2017) Primary photodynamic therapy with verteporfin for small pigmented posterior pole choroidal melanoma. Eye 31:519. https://doi.org/10.1038/eye.2017.22 Finsen NR (1895) The red light treatment of small-pox. Br Med J 2:1412. https://doi.org/10.1136/bmj.2.1823.1412-a Guan M, Ge J, Wu J, Zhang G, Chen D, Zhang W, Zhang Y, Zou T, Zhen M, Wang C (2016) Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials 103:75–85. https://doi.org/10.1016/j.biomaterials.2016.06.023 Han J, Hwang HS, Na K (2018) TRAIL-secreting human mesenchymal stem cells engineered by a non-viral vector and photochemical internalization for pancreatic cancer gene therapy. Biomaterials 182:259–268. https://doi.org/10.1016/j.biomaterials.2018.08.024 Ho Hong S, Choi Y (2018) Mesoporous silica-based nanoplatforms for the delivery of photodynamic therapy agents. J Pharm Investig 48:3–17. https://doi.org/10.1007/s40005-017-0356-2 Hwang HS, Shin H, Han J, Na K (2018) Combination of photodynamic therapy (PDT) and anti-tumor immunity in cancer therapy. J Pharm Investig 48:143–151. https://doi.org/10.1007/s40005-017-0377-x Incorvaia C, Campa C, Parmeggiani F, Menzione M, Dangelo S, Della Corte M, Rinaldi M, Romano M, Dellomo R, Costagliola C (2008) 12-month retrospective study and review of photodynamic therapy with verteporfin for subfoveal choroidal neovascularization in age-related macular degeneration. Retina 28:289–297. https://doi.org/10.1097/IAE.0b013e31813ffe90 Jeon G, Ko YT (2019) Enhanced photodyamic therapy via photosensitizer-loaded nanoparticles for cancer treatment. J Pharm Investig 49:1–8. https://doi.org/10.1007/s40005-017-0363-3 Jeong S, Lee J, Im BN, Park H, Na K (2017) Combined photodynamic and antibiotic therapy for skin disorder via lipase-sensitive liposomes with enhanced antimicrobial performance. Biomaterials 141:243–250. https://doi.org/10.1016/j.biomaterials.2017.07.009 Jo Y-U, Lee CB, Bae SK, Na K (2019) Acetylated hyaluronic acid-poly (L-lactic acid) conjugate nanoparticles for inhibition of doxorubicinol production from doxorubicin. Macromol Res 28:67–73. https://doi.org/10.1007/s13233-020-8003-6 Kelly J, Snell M (1976) Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol 115:150–151. https://doi.org/10.1016/S0022-5347(17)59108-9 Kim J, Kim KS, Park SJ, Na K (2015) Vitamin Bc-bearing hydrophilic photosensitizer conjugate for photodynamic cancer theranostics. Macromol Biosci 15:1081–1090. https://doi.org/10.1002/mabi.201500060 Kim K, Lee C-S, Na K (2016) Light-controlled reactive oxygen species (ROS)-producible polymeric micelles with simultaneous drug-release triggering and endo/lysosomal escape. Chem Commun 52:2839–2842. https://doi.org/10.1039/C5CC09239F Kim DH, Hwang HS, Na K (2018a) Photoresponsive micelle-incorporated doxorubicin for chemo-photodynamic therapy to achieve synergistic antitumor effects. Biomacromol 19:3301–3310. https://doi.org/10.1021/acs.biomac.8b00607 Kim KS, Kim J, Kim DH, Hwang HS, Na K (2018b) Multifunctional trastuzumab–chlorin e6 conjugate for the treatment of HER2-positive human breast cancer. Biomater Sci 6:1217–1226. https://doi.org/10.1039/C7BM01084B Kim J, Park W, Kim D, Lee ES, Lee DH, Jeong S, Park JM, Na K (2019) Tumor-specific aptamer-conjugated polymeric photosensitizer for effective endo-laparoscopic photodynamic therapy. Adv Funct Mater. https://doi.org/10.1002/adfm.201900084 Kliman GH, Puliafito CA, Stern D, Borirakchanyavat S, Gregory WA (1994) Phthalocyanine photodynamic therapy: new strategy for closure of choroidal neovascularization. Lasers Surg Med 15:2–10. https://doi.org/10.1002/lsm.1900150103 Koh A, Lai TY, Takahashi K, Wong TY, Chen L-J, Ruamviboonsuk P, Tan CS, Feller C, Margaron P, Lim TH (2017) Efficacy and safety of ranibizumab with or without verteporfin photodynamic therapy for polypoidal choroidal vasculopathy: a randomized clinical trial. JAMA Ophthalmol 135:1206–1213. https://doi.org/10.1001/jamaophthalmol.2017.4030 Lee C-S, Na K (2014) Photochemically triggered cytosolic drug delivery using pH-responsive hyaluronic acid nanoparticles for light-induced cancer therapy. Biomacromol 15:4228–4238. https://doi.org/10.1021/bm501258s Lee C-S, Park W, Park S-J, Na K (2013) Endolysosomal environment-responsive photodynamic nanocarrier to enhance cytosolic drug delivery via photosensitizer-mediated membrane disruption. Biomaterials 34:9227–9236. https://doi.org/10.1016/j.biomaterials.2013.08.037 Lee C-S, Park W, Jo YU, Na K (2014) A charge-switchable, four-armed polymeric photosensitizer for photodynamic cancer therapy. Chem Commun 50:4354–4357. https://doi.org/10.1039/C4CC00746H Lee JH, Lee SC, Kim H, Lee CS (2019) Comparison of short-term efficacy between oral spironolactone treatment and photodynamic therapy for the treatment of nonresolving central serous chorioretinopathy. Retina 39:127–133. https://doi.org/10.1097/IAE.0000000000001913 Li X, Kolemen S, Yoon J, Akkaya EU (2017) Activatable photosensitizers: agents for selective photodynamic therapy. Adv Funct Mater 27:1604053. https://doi.org/10.1002/adfm.201604053 Li X, Kwon N, Guo T, Liu Z, Yoon J (2018a) Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed Engl 57:11522–11531. https://doi.org/10.1002/anie.201805138 Li X, Lee D, Huang JD, Yoon J (2018b) Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type I photoreactions in photodynamic therapy. Angew Chem Int Ed Engl 130:10033–10038. https://doi.org/10.1002/anie.201806551 Li X, Lee S, Yoon J (2018c) Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev 47:1174–1188. https://doi.org/10.1039/C7CS00594F Lipson RL, Baldes EJ (1960) The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol 82:508–516. https://doi.org/10.1001/archderm.1960.01580040026005 Lipson RL, Baldes EJ, Olsen AM (1961) The use of a derivative of hematoporphyrin in tumor detection. J Natl Cancer Inst 26:1–11. https://doi.org/10.1093/jnci/26.1.1 Maisch T (2015) Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem Photobiol Sci 14:1518–1526. https://doi.org/10.1039/C5PP00037H Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583. https://doi.org/10.1038/nrc1893 Mitchell P, Liew G, Gopinath B, Wong TY (2018) Age-related macular degeneration. Lancet 392:1147–1159. https://doi.org/10.1016/S0140-6736(18)31550-2 Mitri Z, Constantine T, Oregan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:743193. https://doi.org/10.1155/2012/743193 Park SJ, Park W, Na K (2015) Tumor intracellular-environment responsive materials shielded nano-complexes for highly efficient light-triggered gene delivery without cargo gene damage. Adv Funct Mater 25:3472–3482. https://doi.org/10.1002/adfm.201500737 Park H, Lee J, Jeong S, Im BN, Kim MK, Yang SG, Na K (2016a) Lipase-sensitive transfersomes based on photosensitizer/polymerizable lipid conjugate for selective antimicrobial photodynamic therapy of acne. Adv Healthcare Mater 5:3139–3147. https://doi.org/10.1002/adhm.201600815 Park W, Park S-J, Cho S, Shin H, Jung Y-S, Lee B, Na K, Kim D-H (2016b) Intermolecular structural change for thermoswitchable polymeric photosensitizer. J Am Chem Soc 138:10734–10737. https://doi.org/10.1021/jacs.6b04875 Pointdujour-Lim R, Mashayekhi A, Shields JA, Shields CL (2017) Photodynamic therapy for choroidal nevus with subfoveal fluid. Retina 37:718–723. https://doi.org/10.1097/IAE.0000000000001202 Raab O (1900) Uber die Wirkung fluorescirender Stoffe auf Infusorien. Z biol 39:524–546 Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A (2017) Colorectal cancer statistics, 2017. CA Cancer J Clin 67:177–193. https://doi.org/10.3322/caac.21395 Vera DMA, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GPJP (2012) Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 88:499–511. https://doi.org/10.1111/j.1751-1097.2012.01087.x Wang M, Munch IC, Hasler PW, Prünte C, Larsen M (2008) Central serous chorioretinopathy. Acta Ophthalmol 86:126–145. https://doi.org/10.1111/j.1600-0420.2007.00889.x Youn YS, Kwag DS, Lee ES (2017) Multifunctional nano-sized fullerenes for advanced tumor therapy. J Pharm Investig 47:1–10. https://doi.org/10.1007/s40005-016-0282-8 Zhu H, Li J, Qi X, Chen P, Pu K (2017) Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett 18:586–594. https://doi.org/10.1021/acs.nanolett.7b04759 Zuluaga MF, Mailhos C, Robinson G, Shima DT, Gurny R, Lange N (2007) Synergies of VEGF inhibition and photodynamic therapy in the treatment of age-related macular degeneration. Invest Ophthalmol Vis Sci 48:1767–1772. https://doi.org/10.1167/iovs.06-1224