Photodynamic therapy: a new antimicrobial approach to infectious disease?
Tóm tắt
Photodynamic therapy (PDT) employs a non-toxic dye, termed a photosensitizer (PS), and low intensity visible light which, in the presence of oxygen, combine to produce cytotoxic species. PDT has the advantage of dual selectivity, in that the PS can be targeted to its destination cell or tissue and, in addition, the illumination can be spatially directed to the lesion. PDT has previously been used to kill pathogenic microorganisms in vitro, but its use to treat infections in animal models or patients has not, as yet, been much developed. It is known that Gram-(-) bacteria are resistant to PDT with many commonly used PS that will readily lead to phototoxicity in Gram-(+) species, and that PS bearing a cationic charge or the use of agents that increase the permeability of the outer membrane will increase the efficacy of killing Gram-(-) organisms. All the available evidence suggests that multi-antibiotic resistant strains are as easily killed by PDT as naïve strains, and that bacteria will not readily develop resistance to PDT. Treatment of localized infections with PDT requires selectivity of the PS for microbes over host cells, delivery of the PS into the infected area and the ability to effectively illuminate the lesion. Recently, there have been reports of PDT used to treat infections in selected animal models and some clinical trials: mainly for viral lesions, but also for acne, gastric infection by Helicobacter pylori and brain abcesses. Possible future clinical applications include infections in wounds and burns, rapidly spreading and intractable soft-tissue infections and abscesses, infections in body cavities such as the mouth, ear, nasal sinus, bladder and stomach, and surface infections of the cornea and skin.
Tài liệu tham khảo
T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.
M. R. Hamblin and E. L. Newman, On the mechanism of the tumour-localising effect in photodynamic therapy, J. Photochem. Photobiol., B, 1994, 23, 3–8.
M. Ochsner, Photophysical and photobiological processes in the photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18.
M. Athar, H. Mukhtar and D. R. Bickers, Differential role of reactive oxygen intermediates in photofrin-I- and photofrin-II-mediated photoenhancement of lipid peroxidation in epidermal microsomal membranes, J. Invest. Dermatol., 1988, 90, 652–657.
R. W. Redmond and J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.
N. M. Bressler and S. B. Bressler, Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences, Invest. Ophthalmol. Vis. Sci., 2000, 41, 624–628.
W. H. Boehncke, T. Elshorst-Schmidt and R. Kaufmann, Systemic photodynamic therapy is a safe and effective treatment for psoriasis, Arch. Dermatol., 2000, 136, 271–272.
K. B. Trauner and T. Hasan, Photodynamic treatment of rheumatoid and inflammatory arthritis, Photochem. Photobiol., 1996, 64, 740–750.
H. Barr, Barrett’s esophagus: treatment with 5-aminolevulinic acid photodynamic therapy, Gastrointest. Endosc. Clin. North Am., 2000, 10, 421–437.
S. G. Rockson, D. P. Lorenz, W. F. Cheong and K. W. Woodburn, Photoangioplasty: an emerging clinical cardiovascular role for photodynamic therapy, Circulation, 2000, 102, 591–596.
M. P. Jenkins, G. A. Buonaccorsi, M. Raphael, I. Nyamekye, J. R. McEwan, S. G. Bown and C. C. Bishop, Clinical study of adjuvant photodynamic therapy to reduce restenosis following femoral angioplasty, Br. J. Surg., 1999, 86, 1258–1263.
M. Schafer, C. Schmitz, R. Facius, G. Horneck, B. Milow, K. H. Funken and J. Ortner, Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production, Photochem. Photobiol., 2000, 71, 514–523.
M. Bhatti, A. MacRobert, S. Meghji, B. Henderson and M. Wilson, A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization, Photochem. Photobiol., 1998, 68, 370–376.
B. S. Hass and R. B. Webb, Photodynamic effects of dyes on bacteria. IV. Lethal effects of acridine orange and 460- or 500-nm monochromatic light in strains of Escherichia coli that differ in repair capability, Mutat. Res., 1981, 81, 277–285.
A. Kubin, F. Wierrani, R. H. Jindra, H. G. Loew, W. Grunberger, R. Ebermann and G. Alth, Antagonistic effects of combination photosensitization by hypericin, meso-tetrahydroxyphenylchlorin (mTHPC) and photofrin II on Staphylococcus aureus, Drugs Exp. Clin. Res., 1999, 25, 13–21.
T. T. Yoshikawa, Antimicrobial resistance and aging: beginning of the end of the antibiotic era?, J. Am. Geriatr. Soc., 2002, 50, S226–S229.
B. A. Cunha, Antibiotic resistance. Control strategies, Crit. Care Clin., 1998, 14, 309–327.
G. H. Cassell and J. Mekalanos, Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance, JAMA, J. Am. Med. Assoc., 2001, 285, 601–605.
K. E. Cerveny, A. DePaola, D. H. Duckworth and P. A. Gulig, Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice, Infect. Immun., 2002, 70, 6251–6262.
U. S. Sajjan, L. T. Tran, N. Sole, C. Rovaldi, A. Akiyama, P. M. Friden, J. F. Forstner and D. M. Rothstein, P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients, Antimicrob. Agents Chemother., 2001, 45, 3437–3444.
M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.
M. Wainwright, D. A. Phoenix, S. L. Laycock, D. R. Wareing and P. A. Wright, Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus, FEMS Microbiol. Lett., 1998, 160, 177–181.
M. Wilson and C. Yianni, Killing of methicillin-resistant Staphylococcus aureus by low-power laser light, J. Med. Microbiol., 1995, 42, 62–66.
C. Raab, Ber die wirkung fluoreszierender stoffe auf infusoria, Z. Biol., 1900, 39, 524–546.
A. Jesionek and H. von Tappeiner, Zur behandlung der hautcarcinomit mit fluorescierenden stoffen, Muench. Med. Wochenschr., 1903, 47, 2042–2044.
W. Hausmann, Die sensibilisierende wirkung tierscher farbstoffe und ihne physiologische bedeutung, Wien. Klin. Wochenschr., 1908, 21, 1527–1529.
L. Benov, I. Batinic-Haberle, I. Spasojevic and I. Fridovich, Isomeric N-alkylpyridylporphyrins and their Zn(II) complexes: inactive as SOD mimics but powerful photosensitizers, Arch. Biochem. Biophys., 2002, 402, 159–165.
Y. Nitzan and H. Ashkenazi, Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths, Curr. Microbiol., 2001, 42, 408–414.
B. Zeina, J. Greenman, W. M. Purcell and B. Das, Killing of cutaneous microbial species by photodynamic therapy, Br. J. Dermatol., 2001, 144, 274–278.
P. I. Tolstykh, E. F. Stranadko, U. M. Koraboev, A. Urinov, M. P. Tolstykh, R. P. Terekhova, N. N. Volkova and V. A. Duvanskii, Experimental study of photodynamic effect on bacterial wound microflora, Zh. Mikrobiol. Epidemiol. Immunobiol., 2001, 85–87.
M. N. Usacheva, M. C. Teichert and M. A. Biel, Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms, Lasers Surg. Med., 2001, 29, 165–173.
F. Gabor, K. Szocs, P. Maillard and G. Csik, Photobiological activity of exogenous and endogenous porphyrin derivatives in Escherichia coli and Enterococcus hirae cells, Radiat. Environ. Biophys., 2001, 40, 145–151.
G. Bertoloni, F. M. Lauro, G. Cortella and M. Merchat, Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells, Biochim. Biophys. Acta, 2000, 1475, 169–174.
K. Szocs, F. Gabor, G. Csik and J. Fidy, delta-Aminolaevulinic acid-induced porphyrin synthesis and photodynamic inactivation of Escherichia coli B, J. Photochem. Photobiol., B, 1999, 50, 8–17.
P. S. Golding, T. A. King, L. Maddocks, D. B. Drucker and A. S. Blinkhorn, Photosensitization of Staphylococcus aureus with malachite green isothiocyanate: inactivation efficiency and spectroscopic analysis, J. Photochem. Photobiol., B, 1998, 47, 202–210.
F. W. van der Meulen, K. Ibrahim, H. J. Sterenborg, L. V. Alphen, A. Maikoe and J. Dankert, Photodynamic destruction of Haemophilus parainfluenzae by endogenously produced porphyrins, J. Photochem. Photobiol., B, 1997, 40, 204–208.
A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria, J. Photochem. Photobiol., B, 1996, 32, 159–164.
Y. Nitzan, R. Dror, H. Ladan, Z. Malik, S. Kimel and V. Gottfried, Structure-activity relationship of porphines for photoinactivation of bacteria, Photochem. Photobiol., 1995, 62, 342–347.
R. Shawar and B. H. Cooper, Comparative kinetics of hematoporphyrin derivative uptake and susceptibility of Bacillus subtilis and Streptococcus faecalis to photodynamic action, Photochem. Photobiol., 1990, 52, 825–830.
J. Bedwell, J. Holton, D. Vaira, A. J. MacRobert and S. G. Bown, In vitro killing of Helicobacter pylori with photodynamic therapy, Lancet, 1990, 335, 1287.
T. A. Dahl, W. R. Midden and D. C. Neckers, Comparison of photodynamic action by Rose Bengal in gram-positive and gram-negative bacteria, Photochem. Photobiol., 1988, 48, 607–612.
J. P. Martin and N. Logsdon, The role of oxygen radicals in dye-mediated photodynamic effects in Escherichia coli B, J. Biol. Chem., 1987, 262, 7213–7219.
J. G. Banks, R. G. Board, J. Carter and A. D. Dodge, The cytotoxic and photodynamic inactivation of micro-organisms by Rose Bengal, J. Appl. Bacteriol., 1985, 58, 391–400.
Z. Malik, H. Ladan and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions, J. Photochem. Photobiol., B, 1992, 14, 262–266.
Y. Nitzan, M. Gutterman, Z. Malik and B. Ehrenberg, Inactivation of gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.
Y. Nitzan, A. Balzam-Sudakevitz and H. Ashkenazi, Eradication of Acinetobacter baumannii by photosensitized agents in vitro, J. Photochem. Photobiol., B, 1998, 42, 211–218.
Z. Malik, H. Ladan, Y. Nitzan and B. Ehrenberg, The bactericidal activity of a deuteroporphyrin-hemin mixture on gram-positive bacteria. A microbiological and spectroscopic study, J. Photochem. Photobiol., B, 1990, 6, 419–430.
G. Bertoloni, F. Rossi, G. Valduga, G. Jori and J. van Lier, Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli, FEMS Microbiol. Lett., 1990, 59, 149–155.
M. Wilson, Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease, J. Appl. Bacteriol., 1993, 75, 299–306.
M. Wilson, J. Dobson and W. Harvey, Sensitisation of oral bacteria to killing by low-power laser irradiation, Curr. Microbiol., 1992, 25, 77–81.
C. E. Millson, M. Wilson, A. J. Macrobert, J. Bedwell and S. G. Bown, The killing of Helicobacter pylori by low-power laser light in the presence of a photosensitiser, J. Med. Microbiol., 1996, 44, 245–252.
M. Wilson and J. Pratten, Lethal photosensitisation of Staphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time, Lasers Surg. Med., 1995, 16, 272–276.
M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva and G. Jori, Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria, J. Photochem. Photobiol., B, 1996, 32, 153–157.
A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli, Antimicrob. Agents Chemother., 2000, 44, 522–527.
T. A. Dahl, W. R. Midden and P. E. Hartman, Pure singlet oxygen cytotoxicity for bacteria, Photochem. Photobiol., 1987, 46, 345–352.
T. A. Dahl, W. R. Midden and P. E. Hartman, Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen, J. Bacteriol., 1989, 171, 2188–2194.
S. A. Bezman, P. A. Burtis, T. P. Izod and M. A. Thayer, Photodynamic inactivation of E. coli by rose bengal immobilized on polystyrene beads, Photochem. Photobiol., 1978, 28, 325–329.
J. S. Friedberg, R. G. Tompkins, S. L. Rakestraw, S. W. Warren, A. J. Fischman and M. L. Yarmush, Antibody-targeted photolysis. Bacteriocidal effects of Sn (IV) chlorin e6-dextran-monoclonal antibody conjugates, Ann. N. Y. Acad. Sci., 1991, 618, 383–393.
L. Strong, D. M. Yarmush and M. L. Yarmush, Antibody-targeted photolysis. Photophysical, biochemical, and pharmacokinetic properties of antibacterial conjugates, Ann. N. Y. Acad. Sci., 1994, 745, 297–320.
S. Gross, A. Brandis, L. Chen, V. Rosenbach-Belkin, S. Roehrs, A. Scherz and Y. Salomon, Protein-A-mediated targeting of bacteriochlorophyll-IgG to Staphylococcus aureus: a model for enhanced site-specific photocytotoxicity, Photochem. Photobiol., 1997, 66, 872–878.
R. J. Fiel, N. Datta-Gupta, E. H. Mark and J. C. Howard, Induction of DNA damage by porphyrin photosensitizers, Cancer Res., 1981, 41, 3543–3545.
S. Menezes, M. A. Capella and L. R. Caldas, Photodynamic action of methylene blue: repair and mutation in Escherichia coli, J. Photochem. Photobiol., B, 1990, 5, 505–517.
M. Capella, A. M. Coelho and S. Menezes, Effect of glucose on photodynamic action of methylene blue in Escherichia coli cells, Photochem. Photobiol., 1996, 64, 205–210.
B. S. Hass and R. B. Webb, Photodynamic effects of dyes on bacteria. III. Mutagenesis by acridine orange and 500-nm monochromatic light in strains of Escherichia coli that differ in repair capability, Mutat. Res., 1979, 60, 1–11.
F. P. Imray and D. G. MacPhee, The role of DNA polymerase I and the rec system in survival of bacteria and bacteriophages damaged by the photodynamic action of acridine orange, Mol. Gen. Genet., 1973, 123, 289–298.
M. Schafer, C. Schmitz and G. Horneck, High sensitivity of Deinococcus radiodurans to photodynamically-produced singlet oxygen, Int. J. Radiat. Biol., 1998, 74, 249–253.
G. Valduga, B. Breda, G. M. Giacometti, G. Jori and E. Reddi, Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra (N-methyl-4-pyridyl)porphine, Biochem. Biophys. Res. Commun., 1999, 256, 84–88.
K. Konig, M. Teschke, B. Sigusch, E. Glockmann, S. Eick and W. Pfister, Red light kills bacteria via photodynamic action, Cell. Mol. Biol. (Paris), 2000, 46, 1297–1303.
J. S. Brazier, A note on ultra-violet red fluorescence of anaerobic bacteria in vitro, J. Appl. Bacteriol., 1986, 60, 121–126.
J. S. Brazier, Analysis of the porphyrin content of fluorescent pus by absorption spectrophotometry and high performance liquid chromatography, J. Med. Microbiol., 1990, 33, 29–34.
H. Jousimies-Somer and P. Summanen, Recent taxonomic changes and terminology update of clinically significant anaerobic gram-negative bacteria (excluding spirochetes), Clin. Infect. Dis., 2002, 35, S17–S21.
K. Okamoto, K. Nakayama, T. Kadowaki, N. Abe, D. B. Ratnayake and K. Yamamoto, Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis, J. Biol. Chem., 1998, 273, 21-225–21-231.
H. N. Shah and S. E. Gharbia, Biochemical and chemical analyses of black-pigmented gram-negative anaerobes, FEMS Immunol. Med. Microbiol., 1993, 6, 89–96.
H. N. Shah, R. Bonnett, B. Mateen and R. A. Williams, The porphyrin pigmentation of subspecies of Bacteroides melaninogenicus, Biochem. J., 1979, 180, 45–50.
C. A. Henry, M. Judy, B. Dyer, M. Wagner and J. L. Matthews, Sensitivity of Porphyromonas and Prevotella species in liquid media to argon laser, Photochem. Photobiol., 1995, 61, 410–413.
M. R. O’Brian and L. Thony-Meyer, Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes, Adv. Microb. Physiol., 2002, 46, 257–318.
A. Johnsson, B. Kjeldstad and T. B. Melo, Fluorescence from pilosebaceous follicles, Arch. Dermatol. Res., 1987, 279, 190–193.
L. C. Lucchina, N. Kollias, R. Gillies, S. B. Phillips, J. A. Muccini, M. J. Stiller, R. J. Trancik and L. A. Drake, Fluorescence photography in the evaluation of acne, J. Am. Acad. Dermatol., 1996, 35, 58–63.
H. Meffert, K. Gaunitz, T. Gutewort and U. J. Amlong, Therapy of acne with visible light. Decreased irradiation time by using a blue-light high-energy lamp, Dermatol. Monatsschr., 1990, 176, 597–603.
T. B. Melo and M. Johnsson, In vivo porphyrin fluorescence for Propionibacterium acnes. A characterization of the fluorescing pigments, Dermatologica, 1982, 164, 167–174.
M. R. Hamblin, A. Ahmadi, M. J. Tolkoff and T. Zahra Light-mediated killing of Helicobacter pylori in vitro and ex vivo, in 30th Annual Meeting of the American Society for Photobiology, Quebec City, Canada, American Society for Photobiology, Washington, DC, 2002, pp. 30–31.
Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K. E. Giercksky and J. M. Nesland, 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges, Cancer, 1997, 79, 2282–2308.
K. Szocs, G. Csik, A. D. Kaposi and J. Fidy, In situ detection of ALA-stimulated porphyrin metabolic products in Escherichia coli B by fluorescence line narrowing spectroscopy, Biochim. Biophys. Acta, 2001, 1541, 170–178.
M. G. Strakhovskaya, A. O. Shumarina, G. Y. Fraikin and A. B. Rubin, Synthesis of protoporphyrin IX induced by 5-aminolevulinic acid in yeast cells in the presence of 2,2;-dipyridyl, Biokhimiya (Moscow), 1998, 63, 725–728.
M. G. Strakhovskaya, E. V. Ivanova, O. A. Kolesnikova and G. Y. Fraikin, Effect of 2,2′-dipyridyl on accumulation of protoporphyrin IX and its derivatives in yeast mitochondria and plasma membranes, Biokhimiya (Moscow), 1999, 64, 213–216.
M. G. Strakhovskaya, A. O. Shumarina, G. Fraikin and A. B. Rubin, Endogenous porphyrin accumulation and photosensitization in the yeast Saccharomyces cerevisiae in the presence of 2,2′-dipyridyl, J. Photochem. Photobiol., B, 1999, 49, 18–22.
N. S. Soukos, M. Wilson, T. Burns and P. M. Speight, Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro, Lasers Surg. Med., 1996, 18, 253–259.
M. Soncin, C. Fabris, A. Busetti, D. Dei, D. Nistri, G. Roncucci and G. Jori, Approaches to selectivity in the Zn(II)–phthalocyanine photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus, Photochem. Photobiol. Sci., 2002, 1, 815–819.
P. L. deHaseth, M. L. Zupancic and M. T. Record, Jr., RNA polymerase-promoter interactions: the comings and goings of RNA polymerase, J. Bacteriol., 1998, 180, 3019–3025.
S. Callaci, E. Heyduk and T. Heyduk, Core RNA polymerase from E. coli induces a major change in the domain arrangement of the sigma 70 subunit, Mol. Cell, 1999, 3, 229–238.
R. Hengge-Aronis, R. Lange, N. Henneberg and D. Fischer, Osmotic regulation of rpoS-dependent genes in Escherichia coli, J. Bacteriol., 1993, 175, 259–265.
H. I. Zgurskaya, M. Keyhan and A. Matin, The sigma S level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis, Mol. Microbiol., 1997, 24, 643–651.
M. R. Parsek, D. L. Val, B. L. Hanzelka, J. E. Cronan, Jr. and E. P. Greenberg, Acyl homoserine-lactone quorum-sensing signal generation, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 4360–4365.
E. Cabiscol, J. Tamarit and J. Ros, Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol., 2000, 3, 3–8.
P. J. Pomposiello and B. Demple, Redox-operated genetic switches: the SoxR and OxyR transcription factors, Trends Biotechnol., 2001, 19, 109–114.
L. Leive, The barrier function of the gram-negative envelope, Ann. N. Y. Acad. Sci., 1974, 235, 109–129.
L. Leive and V. Kollin, Controlling EDTA treatment to produce permeable Escherichia coli with normal metabolic processes, Biochem. Biophys. Res. Commun., 1967, 28, 229–236.
H. G. Boman, Peptide antibiotics: holy or heretic grails of innate immunity?, Scand. J. Immunol., 1996, 43, 475–482.
R. E. Hancock and A. Bell, Antibiotic uptake into gram-negative bacteria, Eur. J. Clin. Microbiol. Infect. Dis., 1988, 7, 713–720.
B. Christensen, J. Fink, R. B. Merrifield and D. Mauzerall, Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 5072–5076.
M. Vaara and T. Vaara, Polycations as outer membrane-disorganizing agents, Antimicrob. Agents Chemother., 1983, 24, 114–122.
M. Vaara and T. Vaara, Polycations sensitize enteric bacteria to antibiotics, Antimicrob. Agents Chemother., 1983, 24, 107–113.
I. M. Helander, H. L. Alakomi, K. Latva-Kala and P. Koski, Polyethyleneimine is an effective permeabilizer of gram-negative bacteria, Microbiology, 1997, 143, 3193–3199.
R. E. Hancock and P. G. Wong, Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane, Antimicrob. Agents Chemother., 1984, 26, 48–52.
N. S. Soukos, M. R. Hamblin and T. Hasan, The effect of charge on cellular uptake and phototoxicity of polylysine chlorin e6 conjugates, Photochem. Photobiol., 1997, 65, 723–729.
C. R. Rovaldi, A. Pievsky, N. A. Sole, P. M. Friden, D. M. Rothstein and P. Spacciapoli, Photoactive porphyrin derivative with broad-spectrum activity against oral pathogens in vitro, Antimicrob. Agents Chemother., 2000, 44, 3364–3367.
L. Polo, A. Segalla, G. Bertoloni, G. Jori, K. Schaffner and E. Reddi, Polylysine-porphycene conjugates as efficient photosensitizers for the inactivation of microbial pathogens, J. Photochem. Photobiol., B, 2000, 59, 152–158.
F. Lauro, P. Pretto, L. Covolo, G. Jori and G. Bertoloni, Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene–polylysine conjugates, Photochem. Photobiol. Sci., 2002, 1, 468–470.
M. R. Hamblin, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood and T. Hasan, Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria, J. Antimicrob. Chemother., 2002, 49, 941–951.
N. Komerik, M. Wilson and S. Poole, The effect of photodynamic action on two virulence factors of gram-negative bacteria, Photochem. Photobiol., 2000, 72, 676–680.
C. M. Allen, J. M. Weber and J. E. van Lier, Sulfophthalocyanines for photodynamic inactivation of viruses in blood products: effect of structural modifications, Photochem. Photobiol., 1995, 62, 184–189.
H. Mohr, B. Lambrecht and A. Selz, Photodynamic virus inactivation of blood components, Immunol. Invest., 1995, 24, 73–85.
R. Santus, P. Grellier, J. Schrevel, J. C. Maziere and J. F. Stoltz, Photodecontamination of blood components: advantages and drawbacks, Clin. Hemorheol. Microcirc., 1998, 18, 299–308.
F. Kasermann and C. Kempf, Photodynamic inactivation of enveloped viruses by buckminsterfullerene, Antiviral Res., 1997, 34, 65–70.
A. C. Moor, A. E. Wagenaars-van Gompel, A. Brand, M. A. Dubbelman and J. VanSteveninck, Primary targets for photoinactivation of vesicular stomatitis virus by AIPcS4 or Pc4 and red light, Photochem. Photobiol., 1997, 65, 465–470.
B. Bachmann, J. Knuver-Hopf, B. Lambrecht and H. Mohr, Target structures for HIV-1 inactivation by methylene blue and light, J. Med. Virol., 1995, 47, 172–178.
J. B. Hudson, J. Zhou, J. Chen, L. Harris, L. Yip and G. H. Towers, Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus, Photochem. Photobiol., 1994, 60, 253–255.
J. Lenard, A. Rabson and R. Vanderoef, Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 158–162.
H. Mohr, B. Lambrecht and H. Schmitt, Photo-inactivation of viruses in therapeutical plasma, Dev. Biol. Stand., 1993, 81, 177–183.
F. Sieber, J. M. O’Brien and D. K. Gaffney, Merocyanine-sensitized photoinactivation of enveloped viruses, Blood Cells, 1992, 18, 117–127.
S. Carpenter and G. A. Kraus, Photosensitization is required for inactivation of equine infectious anemia virus by hypericin, Photochem. Photobiol., 1991, 53, 169–174.
M. M. Judy, J. L. Matthews, J. T. Newman, H. L. Skiles, R. L. Boriack, J. L. Sessler, M. Cyr, B. G. Maiya and S. T. Nichol, In vitro photodynamic inactivation of herpes simplex virus with sapphyrins: 22 pi-electron porphyrin-like macrocycles, Photochem. Photobiol., 1991, 53, 101–107.
H. C. Neyndorff, D. L. Bartel, F. Tufaro and J. G. Levy, Development of a model to demonstrate photosensitizer-mediated viral inactivation in blood, Transfusion, 1990, 30, 485–490.
T. C. Chanh, J. S. Allan, J. L. Matthews, F. Sogandares-Bernal, M. M. Judy, H. Skiles, J. Leveson, A. Marengo-Rowe and J. T. Newman, Photodynamic inactivation of simian immunodeficiency virus, J. Virol. Methods, 1989, 26, 125–131.
J. L. Matthews, J. T. Newman, F. Sogandares-Bernal, M. M. Judy, H. Skiles, J. E. Leveson, A. J. Marengo-Rowe and T. C. Chanh, Photodynamic therapy of viral contaminants with potential for blood banking applications, Transfusion, 1988, 28, 81–83.
J. S. Friedberg, C. Skema, E. D. Baum, J. Burdick, S. A. Vinogradov, D. F. Wilson, A. D. Horan and I. Nachamkin, In vitro effects of photodynamic therapy on Aspergillus fumigatus, J. Antimicrob. Chemother., 2001, 48, 105–107.
V. Carre, O. Gaud, I. Sylvain, O. Bourdon, M. Spiro, J. Blais, R. Granet, P. Krausz and M. Guilloton, Fungicidal properties of meso-arylglycosylporphyrins: influence of sugar substituents on photoinduced damage in the yeast Saccharomyces cerevisiae, J. Photochem. Photobiol., B, 1999, 48, 57–62.
G. Lazarova and H. Tashiro, Protective effect of amphotericin B against lethal photodynamic treatment in yeast, Microbios, 1995, 82, 187–196.
M. Paardekooper, A. E. Van Gompel, J. Van Steveninck and P. J. Van den Broek, The effect of photodynamic treatment of yeast with the sensitizer chloroaluminum phthalocyanine on various cellular parameters, Photochem. Photobiol., 1995, 62, 561–567.
R. K. Sharma and V. Jain, Effects of 2-deoxy-D-glucose on the photosensitisation-induced bioenergetic changes in Saccharomyces cerevisiae as observed by in vivo NMR spectroscopy, Indian J. Biochem. Biophys., 1994, 31, 36–42.
G. Lazarova, Effect of glutathione on rose bengal photosensitized yeast damage, Microbios, 1993, 75, 39–43.
G. Bertoloni, F. Rossi, G. Valduga, G. Jori, H. Ali and J. E. van Lier, Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells, Microbios, 1992, 71, 33–46.
G. E. Cohn and H. Y. Tseng, Photodynamic inactivation of yeast sensitized by eosin Y, Photochem. Photobiol., 1977, 26, 465–474.
M. Paardekooper, P. J. Van den Broek, A. W. De Bruijne, J. G. Elferink, T. M. Dubbelman and J. Van Steveninck, Photodynamic treatment of yeast cells with the dye toluidine blue: all-or-none loss of plasma membrane barrier properties, Biochim. Biophys. Acta, 1992, 1108, 86–90.
P. Grellier, R. Santus, E. Mouray, V. Agmon, J. C. Maziere, D. Rigomier, A. Dagan, S. Gatt and J. Schrevel, Photosensitized inactivation of Plasmodium falciparum- and Babesia divergens-infected erythrocytes in whole blood by lipophilic pheophorbide derivatives, Vox Sang., 1997, 72, 211–220.
X. J. Zhao, S. Lustigman, Y. S. Li, M. E. Kenney and E. Ben-Hur, Structure-activity and mechanism studies on silicon phthalocyanines with Plasmodium falciparum in the dark and under red light, Photochem. Photobiol., 1997, 66, 282–287.
R. Kliukiene, A. Maroziene, N. Cenas, K. Becker and J. S. Blanchard, Photoinactivation of trypanothione reductase and glutathione reductase by Al-phthalocyanine tetrasulfonate and hematoporphyrin, Biochem. Biophys. Res. Commun., 1996, 218, 629–632.
Z. Alouini and M. Jemli, Destruction of helminth eggs by photosensitized porphyrin, J. Environ. Monit., 2001, 3, 548–51.
C. E. Millson, M. Wilson, A. J. MacRobert and S. G. Bown, Ex-vivo treatment of gastric Helicobacter infection by photodynamic therapy, J. Photochem. Photobiol., B, 1996, 32, 59–65.
S. Sarkar and M. Wilson, Lethal photosensitization of bacteria in subgingival plaque from patients with chronic periodontitis, J. Periodont. Res., 1993, 28, 204–210.
M. Wilson, Bactericidal effect of laser light and its potential use in the treatment of plaque-related diseases, Int. Dent. J., 1994, 44, 181–189.
S. Wood, B. Nattress, J. Kirkham, R. Shore, S. Brookes, J. Griffiths and C. Robinson, An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo, J. Photochem. Photobiol., B, 1999, 50, 1–7.
K. Lasocki, M. Szpakowska, J. Grzybowski and A. Graczyk, Examination of antibacterial activity of the photoactivated arginine haematoporphyrin derivative, Pharmacol. Res., 1999, 39, 181–184.
F. Berthiaume, S. Reiken, M. Toner, R. Tompkins and M. Yarmush, Antibody-targeted photolysis of bacteria in vivo, Biotechnology, 1994, 12, 703–706.
A. Orenstein, D. Klein, J. Kopolovic, E. Winkler, Z. Malik, N. Keller and Y. Nitzan, The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections, FEMS Immunol. Med. Microbiol., 1997, 19, 307–314.
M. C. Teichert, J. W. Jones, M. N. Usacheva and M. A. Biel, Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model, Oral Surg., Oral Med., Oral Pathol., Oral Radiol. Endod., 2002, 93, 155–160.
M. R. Hamblin, D. A. O’Donnell, N. Murthy, C. H. Contag and T. Hasan, Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging, Photochem. Photobiol., 2002, 75, 51–57.
C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson and D. A. Benaron, Photonic detection of bacterial pathogens in living hosts, Mol. Microbiol., 1995, 18, 593–603.
D. A. Benaron, P. R. Contag and C. H. Contag, Imaging brain structure and function, infection and gene expression in the body using light, Philos. Trans. R. Soc. London, Ser. B, 1997, 352, 755–761.
W. Zhang, P. R. Contag, A. Madan, D. K. Stevenson and C. H. Contag, Bioluminescence for biological sensing in living mammals, Adv. Exp. Med. Biol., 1999, 471, 775–784.
M. R. Hamblin, T. Zahra, C. H. Contag, A. T. McManus and T. Hasan, Optical monitoring and treatment of potentially lethal wound infections in vivo, J. Infect. Dis., 2003, 187, 1717–1725.
A. P. Roome, A. E. Tinkler, A. L. Hilton, D. G. Montefiore and D. Waller, Neutral red with photoinactivation in the treatment of herpes genitalis, Br. J. Vener. Dis., 1975, 51, 130–133.
J. L. Melnick and W. E. Rawls, Photoinactivation of herpes simplex virus continues to look promising, JAMA, J. Am. Med. Assoc., 1973, 226, 79–80.
L. E. Bockstahler, C. D. Lytle and K. B. Hellman, A review of photodynamic therapy for herpes simplex: benefits and potential risks, N. Y. J. Dent., 1975, 45, 148–157.
M. G. Myers, M. N. Oxman, J. E. Clark and K. A. Arndt, Failure of neutral-red photodynamic inactivation in recurrent herpes simplex virus infections, N. Engl. J. Med., 1975, 293, 945–949.
T. W. Chang, Viral photoinactivation and oncogenesis, Arch. Dermatol., 1976, 112, 1176.
M. J. Shikowitz, A. L. Abramson, K. Freeman, B. M. Steinberg and M. Nouri, Efficacy of DHE photodynamic therapy for respiratory papillomatosis: immediate and long-term results, Laryngoscope., 1998, 108, 962–967.
A. L. Abramson, M. J. Shikowitz, V. M. Mullooly, B. M. Steinberg, C. A. Amella and H. R. Rothstein, Clinical effects of photodynamic therapy on recurrent laryngeal papillomas, Arch. Otolaryngol. Head Neck Surg., 1992, 118, 25–29.
J. Bujia, J. Feyh and E. Kastenbauer, Photodynamic therapy with derivatives from hemotoporphyrines for recurrent laryngeal papillomatosis of the children. Early results, An. Otorrinolaringol. Ibero Am., 1993, 20, 251–259.
S. Karrer, R. M. Szeimies, C. Abels, U. Wlotzke, W. Stolz and M. Landthaler, Epidermodysplasia verruciformis treated using topical 5-aminolaevulinic acid photodynamic therapy, Br. J. Dermatol., 1999, 140, 935–938.
E. S. Abdel-Hady, P. Martin-Hirsch, M. Duggan-Keen, P. L. Stern, J. V. Moore, G. Corbitt, H. C. Kitchener and I. N. Hampson, Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy, Cancer Res., 2001, 61, 192–196.
G. F. Lombard, S. Tealdi and M. M. Lanotte, The treatment of neurosurgical infections by lasers and porphyrins, in Photodynamic Therapy of Tumors and other Diseases, ed. G. Jori and C. A. Perria, Edizione Libreria Progetto, Padova, 1985, pp. 363–366.
S. Hjalmarsson, M. Sjolund and L. Engstrand, Determining antibiotic resistance in Helicobacter pylori, Expert Rev. Mol. Diagn., 2002, 2, 267–272.
H. H. Xia, B. C. Yu Wong, N. J. Talley and S. K. Lam, Alternative and rescue treatment regimens for Helicobacter pylori eradication, Expert Opin. Pharmacother., 2002, 3, 1301–1311.
C. H. Wilder-Smith, P. Wilder-Smith, P. Grosjean, H. Van Den Bergh, A. Woodtli, P. Monnier, G. Dorta, F. Meister and G. Wagnieres, Photoeradication of Helicobacter pylori using 5-aminolevulinic acid: preliminary human studies, Lasers Surg. Med., 2002, 31, 18–22.
W. Hongcharu, C. R. Taylor, Y. Chang, D. Aghassi, K. Suthamjariya and R. R. Anderson, Topical ALA-photodynamic therapy for the treatment of acne vulgaris, J. Invest. Dermatol., 2000, 115, 183–192.
Y. Itoh, Y. Ninomiya, S. Tajima and A. Ishibashi, Photodynamic therapy for acne vulgaris with topical 5-aminolevulinic acid, Arch. Dermatol., 2000, 136, 1093–1095.
Y. Itoh, Y. Ninomiya, S. Tajima and A. Ishibashi, Photodynamic therapy of acne vulgaris with topical delta-aminolaevulinic acid and incoherent light in Japanese patients, Br. J. Dermatol., 2001, 144, 575–579.
B. E. Dunn, H. Cohen and M. J. Blaser, Helicobacter pylori, Clin. Microbiol. Rev., 1997, 10, 720–741.