Chế tạo bằng phương pháp photodeposition các chất xúc tác oxyhydroxide Ni đồng Co (NixCo1−xOOH) dạng lớp phân cấp có hiệu suất điện phân nâng cao cho phản ứng phát sinh oxy

Nano Research - Tập 13 - Trang 246-254 - 2020
Liang-ai Huang1, Zhishun He1, Jianfeng Guo1, Shi-en Pei1, Haibo Shao1, Jianming Wang1
1Department of Chemistry, Zhejiang University, Hangzhou, China

Tóm tắt

Các chất xúc tác phản ứng phát sinh oxy (OER) có hoạt tính cao, độ bền và giá thành thấp là rất quan trọng để đạt được việc chia tách nước hiệu quả và thực tiễn. Trong nghiên cứu này, các mảng nanosheet NixCo1−xOOH liên kết phân cấp được chế tạo trên nền TiO2/Ti thông qua phương pháp photodeposition đơn giản. So với NiOOH tinh khiết, các mảng nanosheet NixCo1−xOOH thu được có diện tích bề mặt điện hóa hoạt tính lớn hơn, khả năng chuyển giao và thu thập electron nhanh hơn, và tương tác điện tử mạnh hơn, cho thấy điện thế dư thấp là 350 mV ở mật độ dòng 10 mA·cm−2 và hệ số Tafel nhỏ là 41 mV·dec−1 trong dung dịch kiềm, với hiệu suất OER vượt trội hơn NiOOH tinh khiết và hầu hết các chất xúc tác dựa trên Ni. Hơn nữa, điện cực NixCo1−xOOH cho thấy độ ổn định tuyệt vời ở mật độ dòng 10 mA·cm−2 trong 24 giờ, điều này được giải thích là do sự duy trì cấu trúc nhờ vào độ bám dính tốt của chất xúc tác với nền. Nghiên cứu của chúng tôi cung cấp một phương pháp tiếp cận thay thế cho việc thiết kế hợp lý các chất xúc tác điện cực OER hoạt động cao và triển vọng.

Từ khóa

#chất xúc tác OER #nấm NixCo1−xOOH #phát sinh oxy #phân tách nước #photodeposition

Tài liệu tham khảo

Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal.2017, 7, 7196–7225. Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res.2019, 12, 1327–1331. Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res.2018, 11, 1883–1894. He, W. H.; Yang, Y.; Wang, L. R.; Yang, J. J.; Xiang, X.; Yan, D. P.; Li, F. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy. ChemSusChem2015, 8, 1568–1576. Ye, W.; Fang, X. Y.; Chen, X. B.; Yan, D. P. A three-dimensional nickel-chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. Nanoscale2018, 10, 19484–19491. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev.2015, 44, 5148–5180. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc.2014, 136, 7587–7590. Zhang, Q.; Zhong, H. X.; Meng, F. L.; Bao, D.; Zhang, X. B.; Wei, X. L. Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res.2018, 11, 1294–1300. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev.2014, 43, 6555–6569. Grätzel, M. Photoelectrochemical cells. Nature2001, 414, 338–344. Swierk, J. R.; Mallouk, T. E. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev.2013, 42, 2357–2387. Chen, B.; Zhang, Z.; Kim, S.; Lee, S.; Lee, J.; Kim, W.; Yong, K. Ostwald ripening driven exfoliation to ultrathin layered double hydroxides nanosheets for enhanced oxygen evolution reaction. ACS Appl. Mater. Interfaces2018, 10, 44518–44526. Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A2018, 6, 167–178. Shen, J. Y.; Wang, M.; Zhao, L.; Jiang, J.; Liu, H.; Liu, J. X Self-supported stainless steel nanocone array coated with a layer of Ni-Fe oxides/(oxy)hydroxides as a highly active and robust electrode for water oxidation. ACS Appl. Mater. Interfaces2018, 10, 8786–8796. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Horn, Y. S. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science2011, 334, 1383–1385. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc.2015, 137, 3638–3648. Liu, G. G.; Li, P.; Zhao, G. X.; Wang, X.; Kong, J. T.; Liu, H. M.; Zhang, H. B.; Chang, K.; Meng, X. G.; Kako, T. et al. Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc.2016, 138, 9128–9136. Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci.2016, 9, 123–129. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater.2012, 11, 550–557. Tkalych, A. J.; Martirez, J. M. P.; Carter, E. A. Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001). Phys. Chem. Chem. Phys.2018, 20, 19525–19531. Conesa, J. C. Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C2016, 120, 18999–19010. Zaffran, J.; Toroker, M. C. Benchmarking density functional theory based methods to model NiOOH material properties: Hubbard and van der Waals corrections vs hybrid functionals. J. Chem. Theory Comput.2016, 12, 3807–3812. Shao, Y. B.; Zheng, M. Y.; Cai, M. M.; He, L.; Xu, C. L. Improved electrocatalytic performance of core-shell NiCo/NiCoOx with amorphous FeOOH for oxygen-evolution reaction. Electrochim. Acta2017, 257, 1–8. Jin, Y. S.; Huang, S. L.; Yue, X.; Shu, C.; Shen, P. K. Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. Int. J. Hydrogen Energy2018, 43, 12140–12145. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc.2017, 139, 11361–11364. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc.2018, 140, 3876–3879. Liang, Y.; Yu, Y. F.; Huang, Y.; Shi, Y. M.; Zhang, B. Adjusting the electronic structure by Ni incorporation: A generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. J. Mater. Chem. A2017, 5, 13336–13340. Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater, in press, DOI: https://doi.org/10.1002/aenm.201900954. Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front.2019, 6, 687–693. Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano2014, 8, 9518–9523. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc.2014, 136, 6744–6753. Xu, Y. Q.; Hao, Y. C.; Zhang, G. X.; Lu, Z. Y.; Han, S.; Li, Y. P.; Sun, X. M. Room-temperature synthetic NiFe layered double hydroxide with different anions intercalation as an excellent oxygen evolution catalyst. RSC Adv.2015, 5, 55131–55135. Zhu, S. S.; Zhang, P. P.; Chang, L.; Zhong, Y.; Wang, K.; Shao, H. B.; Wang, J. M.; Zhang, J. Q.; Cao, C. N. Photochemical fabrication of 3D hierarchical Mn3O4/H-TiO2 composite films with excellent electrochemical capacitance performance. Phys. Chem. Chem. Phys.2016, 18, 8529–8536. Zhang, L. Y.; Zhong, Y.; He, Z. S.; Wang, J. M.; Xu, J.; Cai, J.; Zhang, N.; Zhou, H.; Fan, H. Q.; Shao, H. B. et al. Surfactant-assisted photochemical deposition of three-dimensional nanoporous nickel oxyhydroxide films and their energy storage and conversion properties. J. Mater. Chem. A2013, 1, 4277–4285. Shao, F.; Sun, J.; Gao, L.; Yang, S. W.; Luo, J. Q. Growth of various TiO2 nanostructures for dye-sensitized solar cells. J. Phys. Chem. C2011, 115, 1819–1823. Zhu, Z. J.; Liu, X. Y.; Ye, Z. N.; Zhang, J. Q.; Cao, F. H.; Zhang, J. X. A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential. Sens. Actuators B Chem.2018, 255, 1974–1982. Lu, X. H.; Zeng, Y. X.; Yu, M. H.; Zhai, T.; Liang, C. L.; Xie, S. L.; Balogun, M. S.; Tong, Y. X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater.2014, 26, 3148–3155. Gao, T. T.; Jin, Z. Y.; Liao, M.; Xiao, J. L.; Yuan, H. Y.; Xiao, D. A trimetallic V-Co-Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A2015, 3, 17763–17770. Li, J. T.; Huang, W. Z.; Wang, M. M.; Xi, S. B.; Meng, J. S.; Zhao, K. N.; Jin, J.; Xu, W. W.; Wang, Z. Y.; Liu, X. et al. Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett.2019, 4, 285–292. Bledowski, M.; Wang, L. D.; Neubert, S.; Mitoraj, D.; Beranek, R. Improving the performance of hybrid photoanodes for water splitting by photodeposition of iridium oxide nanoparticles. J. Phys. Chem. C2014, 118, 18951–18961. Le Formal, F.; Grätzel, M.; Sivula, K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater.2010, 20, 1099–1107. Park, H.; Kim, K. Y.; Choi, W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode. J. Phys. Chem. B2002, 106, 4775–4781. Zhang, L. Y.; Xu, L.; Wang, J. M.; Shao, H. B.; Fan, Y. Q.; Zhang, J. Q. UV-induced oxidative energy storage behavior of a novel nanostructured TiO2-Ni(OH)2 bilayer system. J. Phys. Chem. C2011, 115, 18027–18034. Li, Y.; Hu, L. S.; Zheng, W. R.; Peng, X.; Liu, M. J.; Chu, P. K.; Lee, L. Y. S. Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy2018, 52, 360–368. Steimecke, M.; Seiffarth, G.; Bron, M. In situ characterization of Ni and Ni/Fe thin film electrodes for oxygen evolution in alkaline media by a Raman-coupled scanning electrochemical microscope setup. Anal. Chem.2017, 89, 10679–10686. Yeo, B. S.; Bell, A. T. In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C2012, 116, 8394–8400. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2013, 135, 12329–12337. Xu, R.; Wu, R.; Shi, Y. M.; Zhang, J. F.; Zhang, B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy2016, 24, 103–110. Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed.2015, 54, 8722–8727. Han, X. T.; Yu, C.; Zhou, S.; Zhao, C. T.; Huang, H. W.; Yang, J.; Liu, Z. B.; Zhao, J. J.; Qiu, J. S. Ultrasensitive iron-triggered nanosized Fe-CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater.2017, 7, 1602148. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2011, 133, 5587–5593. Zhu, S. S.; Huang, L. A.; He, Z. S.; Wang, K.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Investigation of oxygen vacancies in Fe2O3/CoOx composite films for boosting electrocatalytic oxygen evolution performance stably. J. Electroanal. Chem.2018, 827, 42–50. Chen, Z.; Cai, L.; Yang, X. F.; Kronawitter, C.; Guo, L. J.; Shen, S. H.; Koel, B. E. Reversible structural evolution of NiCoOxHy during the oxygen evolution reaction and identification of the catalytically active phase. ACS Catal.2018, 8, 1238–1247. Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys.2000, 2, 1319–1324. Levine, S.; Smith, A. L. Theory of the differential capacity of the oxide/aqueous electrolyte interface. Discuss. Faraday Soc.1971, 52, 290–301. Wu, L. K.; Wu, W. Y.; Xia, J.; Cao, H. Z.; Hou, G. Y.; Tang, Y. P.; Zheng, G. Q. Nanostructured NiCo@NiCoOx core-shell layer as efficient and robust electrocatalyst for oxygen evolution reaction. Electrochim. Acta2017, 254, 337–347. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc.2014, 136, 4897–4900. Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci.2012, 3, 2515–2525. Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed.2014, 53, 12594–12599. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc.2013, 135, 16977–16987.