Sản Xuất Quang Hóa Của Các Carbonyl Trong Khí Quyển Tại Một Khu Vực Nông Thôn Ở Nam Trung Quốc

Springer Science and Business Media LLC - Tập 66 - Trang 594-605 - 2014
Songjun Guo1, Xiaolang He1, Mei Chen2, Jihua Tan3, Yinghui Wang1
1School of Environment, Guangxi University, Nanning, China
2Agricultural and Mechanical College, Nanning University, Nanning, China
3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Lần đầu tiên, các carbonyl trong môi trường được đo lường tại một khu vực nông thôn ở nam Trung Quốc từ tháng 8 năm 2012 đến tháng 2 năm 2013 nhằm điều tra các đặc điểm phân bố và nguồn gốc của chúng. Formaldehyde, acetaldehyde và acetone là ba loại carbonyl phong phú nhất, chiếm từ 83 đến 95% tổng số bảy loại carbonyl được xác định. Tiềm năng hình thành O3 của các carbonyl vào mùa hè (59,55 μg/m3) cao gấp khoảng mười lần so với mùa đông (6,37 μg/m3), và các tỷ lệ phân hủy quang học được tính toán nhanh hơn đáng kể vào mùa hè so với mùa đông, cho thấy hoạt động quang hóa mạnh mẽ vào mùa hè. Các biến đổi theo mùa và theo giờ của các carbonyl cho thấy rằng (1) nồng độ tổng thể của các carbonyl vào mùa hè (12,62 ± 10,83 μg/m3) cao gấp khoảng năm lần so với mùa đông (2,33 ± 0,90 μg/m3), và xu hướng tương tự cũng áp dụng cho ba loại carbonyl phong phú; (2) tỷ lệ trung bình mùa hè và mùa đông (S/W) của formaldehyde và acetaldehyde là 10–13, và tỷ lệ S/W của acetone là ~2,59; và (3) nồng độ cao nhất của ba carbonyl này và tổng các carbonyl xảy ra vào khoảng 14:00 - 16:00 với nhiệt độ cao và ánh sáng mặt trời mạnh, đặc biệt là vào mùa hè. Những biến đổi này cung cấp bằng chứng trực tiếp về việc sản xuất quang hóa đáng kể của các carbonyl trong môi trường. Tỷ lệ C1/C2 trung bình (3,07 ± 1,62) trong mùa hè cao hơn nhiều so với mức (1,28 ± 0,25) trong mùa đông, và tỷ lệ C2/C3 trung bình (35,09 ± 58,67) trong mùa hè cũng cao hơn đáng kể so với mức (4,75 ± 2,12) trong mùa đông, cả hai trường hợp gián tiếp hàm ý sản xuất quang hóa dương trong mùa hè. Đặc biệt, những tương quan mạnh mẽ (R2 = 0,63–0,98) giữa nhiệt độ và cường độ ánh sáng mặt trời với ba carbonyl phong phú và tổng carbonyl đã được quan sát, chỉ ra một nguồn nguyên nhân tương tự như việc sản xuất quang hóa đáng kể.

Từ khóa

#carbonyl #formaldehyde #acetaldehyde #acetone #quang hóa #môi trường #Nam Trung Quốc

Tài liệu tham khảo

Andreini BP, Baroni R, Galimberti E, Sesana G (2000) Aldehydes in the atmospheric environment: evaluation of human exposure in the northwest area of Milan. Microchem J 67:11–19 Arey J, Aschmann SM, Kwok ESC, Atkinson R (2001) Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NO x -air photooxidations of C5–C8 n-alkanes. J Phys Chem A 105:1020–1027 Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes. J Phys Chem Ref Data 26(2):215–290 Atkinson R (2000) Atmospheric chemistry of VOCs and NO x . Atmos Environ 34:2063–2101 Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638 Borbon A, Coddeville P, Locoge N, Galloo J-C (2004) Characterising sources and sinks of rural VOC in eastern France. Chemosphere 57:931–942 Carlier P, Hannachi H, Mouvier G (1986) The chemistry of carbonyl compounds in the atmosphere. Atmos Environ 20:2079–2099 Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manag Assoc 44:881–899 Carter WPL, Seinfeld JH (2012) Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming. Atmos Environ 50:255–266 Cerón RM, Cerón JG, Muriel M (2007) Diurnal and seasonal trends in carbonyl levels in a semi-urban coastal site in the Gulf of Campeche, Mexico. Atmos Environ 41:63–71 Chameides WL, Fehsenfeld F, Rodgers MO, Cardelino C, Martinez J, Parrish D et al (1992) Ozone precursor relationships in the ambient atmosphere. J Geophys Res 97:6037–6055 Christensen CS, Shov H, Nielsen T, Lohsen C (2000) Temporal variation of carbonyl compound concentrations at a semi-rural site in Denmark. Atmos Environ 34:287–296 Den Bergh VV, Vankerckhoven HCH, Vinckier FCC (2004) Study of the carbonyl products of terpene/OH radical reactions: detection of the 2,4-DNPH derivatives by HPLC-MS. Anal Bioanal Chem 379:484–494 Duan J, Tan J, Yang L, Wu S, Hao J (2008) Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos Res 88:25–35 Duan J, Guo S, Tan J, Wang S, Chai F (2012) Characteristics of atmospheric carbonyls during haze days in Beijing, China. Atmos Res 114:17–27 Duane M, Poma B, Rembges D, Astorgs C, Larsen BR (2002) Isoprene and its degradation products as strong ozone precursors in Insubria, Northern Italy. Atmos Environ 36:3867–3879 Duncan BN, Yoshida Y, Olson JR, Sillman S, Martin RV, Lamsal L et al (2010) Application of OMI observations to a space-based indicator of NO x and VOC controls on surface ozone formation. Atmos Environ 44:2213–2223 Evtyugina MG, Nunes T, Pio C, Costa CS (2006) Photochemical pollution under sea breeze conditions, during summer, at the Portuguese West Coast. Atmos Environ 40:6277–6293 Evtyugina MG, Nunes T, Alves C, Marques MC (2009) Photochemical pollution in a rural mountainous area in the northeast of Portugal. Atmos Res 92:151–158 Fall R (2003) Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev 103:4941–4951 Feng Y, Wen S, Chen Y, Wang X, Lü H, Bi X et al (2005) Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmos Environ 39:1789–1800 Finlayson-Pitts BJ, Pitts JN (1986) Atmospheric chemistry fundamentals and experimental techniques. Wiley, New York Guo S, Chen M (2013) 13C isotope evidence for photochemical production of atmospheric formaldehyde, acetaldehyde and acetone pollutants in Guangzhou. Environ Chem Lett 11:77–82 Guo S, Wen S, Wang X, Sheng G, Fu J, Jia W et al (2007) Carbon isotope analysis of acetaldehyde and acetone by cysteamine derivatization. Rapid Commun Mass Spectrom 21:1809–1812 Guo S, Wen S, Wang X, Sheng G, Fu J, Hu P et al (2009) Carbon isotope analysis for source identification of atmospheric formaldehyde and acetaldehyde in Dinghushan Biosphere Reserve in South China. Atmos Environ 43:3489–3495 Haagen-Smit A (1952) Chemistry and physiology of Los Angeles smog. Ind Eng Chem 44:1342–1344 Hellen H, Hakola H, Reissell A, Ruuskanen TM (2004) Carbonyl compounds in boreal coniferous forest air in Hyytiala, Southern Finland. Atmos Chem Phys 4:1771–1780 Ho KF, Lee SC, Louie PKK, Zou SC (2002) Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. Atmos Environ 36:1259–1265 Huang J, Feng Y, Li J, Xiong B, Feng J, Wen S et al (2008) Characteristics of carbonyl compounds in ambient air of Shanghai, China. J Atmos Chem 61:1–20 Kean AJ, Grosjean E, Grosjean D, Harley RA (2001) On-road measurement of carbonyls in Caledonian light-duty vehicle emissions. Environ Sci Technol 35:4198–4204 Khare P, Satsangi GS, Kumar N, Kumari KM, Srivastava SS (1997) HCHO, HCOOH and CH3COOH in air and rain water at a rural tropical site in north central India. Atmos Environ 31(23):3867–3875 Khwaja HA, Narang A (2008) Carbonyls and non-methane hydrocarbons at a rural mountain site in northeastern United States. Chemosphere 71:2030–2043 Kim K, Hong Y, Pal R, Jeon E, Koo Y, Sunwoo Y (2008) Investigation of carbonyl compounds in air from various industrial emission sources. Chemosphere 70:807–820 Larssen S, Barrett KJ, Fiala J, Goodwin J, Hagen LO, Henriksen JF, et al. (2002) Air quality in Europe: state and trends 1990–1999. Topic report, April 2002, European Environment Agency, Copenhagen, Denmark Leungsakul S, Jeffries HE, Kamens RM (2005) A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight. Atmos Environ 39:7063–7082 Li Y, Shao M, Lu S, Chang C–C, Dasgupta PK (2010) Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic games. Atmos Environ 44:2632–2639 Liu Y, Bi X, Chan LY, Wen S, Wang X, Sheng G et al (2013) Characteristics, loss and gain of atmospheric carbonyl compounds in winters of 2008–2010 in Pearl River Delta region, China. J Atmos Chem 70:53–67 Lü H, Cai Q, Wen S, Chi Y, Guo S, Sheng G et al (2009) Carbonyl compounds in the ambient air of hazy days and clear days in Guangzhou, China. Atmos Res 94:363–372 Lü H, Cai Q, Wen S, Chi Y, Guo S, Sheng G et al (2010) Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou, China. Sci Total Environ 408:3523–3529 Macintosh DL, Zimmer-Dauphinee SA, Manning RO, Williams PL (2000) Aldehyde concentrations in ambient air of coastal Georgia, USA. Environ Monit Assess 63:1573–2959 Martin RS, Westberg H, Allwine E, Ashman L, Farmer JC, Lamb B (1991) Measurement of isoprene and its atmospheric oxidation products in a central Pennsylvania deciduous forest. J Atmos Chem 13:1–32 Moussa SG, El-Fadel M, Saliba NA (2006) Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon. Atmos Environ 40:2459–2468 Muller K, Haferkorn S, Grabmer W, Wisthaler A, Hansel A, Kreuzwieser J et al (2006) Biogenic carbonyl compounds within and above a coniferous forest in Germany. Atmos Environ 40:S81–S91 Pang X, Lee X (2010) Temporal variations of atmospheric carbonyls in urban ambient air and street canyons of a mountainous city in southwest China. Atmos Environ 44:2098–2106 Pang X, Mu Y (2006) Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmos Environ 40:6313–6320 Pang X, Mu Y, Lee X, Zhang Y, Xu Z (2009) Influences of characteristic meteorological conditions on atmospheric carbonyls in Beijing, China. Atmos Res 93:913–919 Possanzini M, Palo VD, Petricca M, Fratarcangeli R, Brocco D (1996) Measurements of lower carbonyls in Rome ambient air. Atmos Environ 30:3757–3764 Possanzini M, Palo VD, Cecinato A (2002) Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. Atmos Environ 36:3195–3201 Shepson PB, Hastie DR, Schiff HI, Polizzi M (1991) Atmospheric concentrations and temporal variations of C1–C3 carbonyl compounds at two rural sites in central Ontario. Atmos Environ 25A:2001–2015 Sumner AL, Shepson PB, Couch TL, Thornberry T, Carrol MA, Sillman S et al (2001) A study of formaldehyde chemistry above a forest canopy. J Geophys Res 106(D20):24387–24405 Tago H, Kimura H, Kozawa K, Fujie K (2005) Formaldehyde concentrations in ambient air in urban and rural areas in Gunma Prefecture, Japan. Water Air Soil Pollut 163:269–280 United States Environmental Protection Agency (1996) Determination of formaldehyde in ambient air using adsorbent cartridge followed by high performance liquid chromatography (HPLC). EPA method: TO-11A Vairavamurthy A, Roberts JM, Newman L (1992) Methods for determination of low molecular weight carbonyl compounds in the atmosphere: a review. Atmos Environ 26A(11):1965–1993 Villanueva-Fierro I, Popp CJ, Martin RS (2004) Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cotton wood trees at rural and forested sites in Central New Mexico. Atmos Environ 38:249–260 Wiedinmyer C, Fridefeld S, Baugh W, Greenberg J, Guenther A, Fraser M et al (2001) Measurement and analysis of atmospheric concentrations of isoprene and its reaction products in central Texas. Atmos Environ 35:1001–1013 Zhang Y, Mu Y, Liang P, Xu Z, Liu J, Zhang H et al (2012) Atmospheric BTEX and carbonyls during summer seasons of 2008-2010 in Beijing. Atmos Environ 59:186–191