Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications

Journal of Environmental Chemical Engineering - Tập 4 Số 4 - Trang 4143-4164 - 2016
Rizwan Ahmad1,2, Zaki Ahmad1,3, Asad U. Khan1, Naila Riaz Mastoi1, Muhammad Aslam1,2, Jeonghwan Kim2
1Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, Pakistan
2Department of Environmental Engineering, Inha University, Incheon, Republic of Korea
3King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fujishima, 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1, 10.1016/S1389-5567(00)00002-2

Fujishima, 2000, TiO2 photocatalysts and diamond electrodes, Electrochim. Acta, 45, 4683, 10.1016/S0013-4686(00)00620-4

Fujishima, 2008, TiO 2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001

Thacker, 2005, Pharmaceutical data elude researchers, Environ. Sci. Technol., 39, 193A

Mandal, 2016, Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment, J. Environ. Chem. Eng., 4, 2706, 10.1016/j.jece.2016.05.020

Ajmal, 2016, Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders, J. Environ. Chem. Eng., 4, 2138, 10.1016/j.jece.2016.03.041

Mohamed, 2012, The role of electron transfer in photocatalysis: fact and fictions, Appl. Catal. B: Environ., 128, 91, 10.1016/j.apcatb.2012.05.045

Herrmann, 1993, Heterogeneous photocatalysis: an emerging technology for water treatment, Catal. Today, 17, 7, 10.1016/0920-5861(93)80003-J

Parsons, 2005, Advanced oxidation processes for water and wastewater treatment, Water Intell. Online, 4

Satheesh, 2014, Visible light responsive photocatalytic applications of transition metal (M=Cu, Ni and Co) doped α-Fe2O3 nanoparticles, J. Environ. Chem. Eng., 2, 1956, 10.1016/j.jece.2014.08.016

Muruganandham, 2004, Photochemical oxidation of reactive azo dye with UV–H2O2 process, Dyes Pigm., 62, 269, 10.1016/j.dyepig.2003.12.006

Muhamad, 2010, Kinetic studies of catalytic photodegradation of chlorpyrifos insecticide in various natural waters, Arab. J. Chem., 3, 127, 10.1016/j.arabjc.2010.02.009

Mokhtar Mohamed, 2015, Fabrication of Ag nanoparticles modified TiO2–CNT heterostructures for enhanced visible light photocatalytic degradation of organic pollutants and bacteria, J. Environ. Chem. Eng., 3, 1847, 10.1016/j.jece.2015.06.018

Fatimah, 2015, Microwave assisted preparation of TiO2/Al-pillared saponite for photocatalytic phenol photo-oxidation in aqueous solution, Arab. J. Chem., 8, 228, 10.1016/j.arabjc.2011.08.004

Gar Alalm, 2016, Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals, J. Environ. Chem. Eng., 4, 1929, 10.1016/j.jece.2016.03.023

Shen, 2015, Strategies for engineering metal-organic frameworks as efficient photocatalysts, Chin. J. Catal., 36, 2071, 10.1016/S1872-2067(15)60984-6

Pichat, 2015, A short overview of the state of the art and perspectives on the main basic factors hindering the development of photocatalytic treatment of water, Water Sci. Technol.: Water Supply, 15, 1

Engweiler, 1996, WO x/TiO 2 catalysts prepared by grafting of tungsten alkoxides: morphological properties and catalytic behavior in the selective reduction of NO by NH 3, J. Catal., 159, 259, 10.1006/jcat.1996.0087

Mozia, 2010, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol., 73, 71, 10.1016/j.seppur.2010.03.021

Pelaez, 2012, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, 331, 10.1016/j.apcatb.2012.05.036

Sajjad, 2011

Zhang, 2012, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review, J. Photochem. Photobiol. C: Photochem. Rev., 13, 263, 10.1016/j.jphotochemrev.2012.07.002

Pichat, 2016, Fundamentals of TiO2 photocatalysis. consequences for some environmental applications, 321

Lazar, 2012, Photocatalytic water treatment by titanium dioxide: recent updates, Catalysts, 2, 572, 10.3390/catal2040572

McCullagh, 2011, Photocatalytic reactors for environmental remediation: a review, J. Chem. Technol. Biotechnol., 86, 1002, 10.1002/jctb.2650

De Lasa, 2009

Shavisi, 2016, Solar-light-harvesting degradation of aqueous ammonia by CuO/ZnO immobilized on pottery plate: linear kinetic modeling for adsorption and photocatalysis process, J. Environ. Chem. Eng., 4, 2736, 10.1016/j.jece.2016.04.035

Friedmann, 2010, TiO 2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal. B: Environ., 99, 398, 10.1016/j.apcatb.2010.05.014

Cozzoli, 2003, Photocatalytic activity of organic-capped anatase TiO 2 nanocrystals in homogeneous organic solutions, Mater. Sci. Eng.: C, 23, 707, 10.1016/j.msec.2003.09.101

Nuengmatcha, 2016, Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO2 composite, J. Environ. Chem. Eng., 4, 2170, 10.1016/j.jece.2016.03.045

Konstantinou, 2004, TiO 2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal. B: Environ., 49, 1, 10.1016/j.apcatb.2003.11.010

Jyothi, 2014, Ultrasound (US), ultraviolet light (UV) and combination (US+ UV) assisted semiconductor catalysed degradation of organic pollutants in water: oscillation in the concentration of hydrogen peroxide formed in situ, Ultrason. Sonochem., 21, 1787, 10.1016/j.ultsonch.2014.03.019

Jallouli, 2014, Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation, Arab. J. Chem.

Shifu, 2005, Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2·SiO2/beads by sunlight, Sol. Energy, 79, 1, 10.1016/j.solener.2004.10.006

Shifu, 2005, Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2·SiO2/beads by sunlight, Sol. Energy, 79, 1, 10.1016/j.solener.2004.10.006

Umar, 2013

Berberidou, 2017, Study of the decomposition and detoxification of the herbicide bentazon by heterogeneous photocatalysis: kinetics intermediates and transformation pathways, Appl. Catal. B: Environ., 200, 150, 10.1016/j.apcatb.2016.06.068

Tizaoui, 2011, Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques, Desalination, 273, 197, 10.1016/j.desal.2010.11.036

Hassan, 2016, Employing TiO2 photocatalysis to deal with landfill leachate: current status and development, Chem. Eng. J., 285, 264, 10.1016/j.cej.2015.09.093

Chong, 2010, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039

Ahmed, 2011, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92, 311, 10.1016/j.jenvman.2010.08.028

Shao, 2013, Fabrication of large-diameter tube-like mesoporous TiO 2 via homogeneous precipitation and photocatalytic decomposition of papermaking wastewater, Chem. Eng. J., 230, 227, 10.1016/j.cej.2013.06.084

Vohra, 2000, TiO 2-assisted photocatalysis of lead–EDTA, Water Res., 34, 952, 10.1016/S0043-1354(99)00223-7

Gogate, 2004, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8, 501, 10.1016/S1093-0191(03)00032-7

Fernández, 2004, Orange II photocatalysis on immobilised TiO2, Appl. Catal. B: Environ., 48, 205, 10.1016/j.apcatb.2003.10.014

Zangeneh, 2015, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review, J. Ind. Eng. Chem., 26, 1, 10.1016/j.jiec.2014.10.043

Lee, 2016, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88, 428, 10.1016/j.watres.2015.09.045

Hosseini, 2007, Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol, Appl. Catal. B: Environ., 74, 53, 10.1016/j.apcatb.2006.12.015

Behnajady, 2007, Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates, Chem. Eng. J., 127, 167, 10.1016/j.cej.2006.09.013

Lin, 2005, Development of an optical fiber monolith reactor for photocatalytic wastewater treatment, J. Appl. Electrochem., 35, 699, 10.1007/s10800-005-1364-x

Ananpattarachai, 2014, Kinetics and mass transfer of fixed bed photoreactor using N-doped TiO2 thin film for tannery wastewater under visible light, Chem. Eng., 42

Merabet, 2009, Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process—influence of some operating parameters, J. Hazard. Mater., 166, 1244, 10.1016/j.jhazmat.2008.12.047

Zainal, 2005, Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps, J. Hazard. Mater., 125, 113, 10.1016/j.jhazmat.2005.05.013

Nam, 2002, Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor, Chemosphere, 47, 1019, 10.1016/S0045-6535(01)00327-7

Konstantinou, 2004, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations, Appl. Catal. B: Environ., 49, 1, 10.1016/j.apcatb.2003.11.010

Guettaï, 2005, Desalination and the EnvironmentPhotocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study, Desalination, 185, 427, 10.1016/j.desal.2005.04.048

Rabindranathan, 2003, Photocatalytic degradation of phosphamidon on semiconductor oxides, J. Hazard. Mater., 102, 217, 10.1016/S0304-3894(03)00167-5

Mezughi, 2014, Effect of Tio2 concentration on photocatalytic degradation of reactive orange 16 dye (Ro16), Adv. Environ. Biol., 8, 692

Pardeshi, 2008, A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy, Sol. Energy, 82, 700, 10.1016/j.solener.2008.02.007

Senthilnathan, 2009, Removal of mixed pesticides from drinking water system by photodegradation using suspended and immobilized TiO2, J. Environ. Sci. Health Part B, 44, 262, 10.1080/03601230902728328

Henderson, 2011, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep., 66, 185, 10.1016/j.surfrep.2011.01.001

Yu, 2000, Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films, Mater. Res. Bull., 35, 1293, 10.1016/S0025-5408(00)00327-5

Feng, 2014, Application of immobilized TiO photocatalysis to improve the inactivation of Heterosigma akashiwo in ballast water by intense pulsed light, Chemosphere, 125, 102, 10.1016/j.chemosphere.2014.11.060

Chen, 2006, Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol–gel method, J. Mol. Catal. A: Chem., 244, 73, 10.1016/j.molcata.2005.08.056

Khan, 2015, Humic acid fouling in a submerged photocatalytic membrane reactor with binary TiO2–ZrO2 particles, J. Ind. Eng. Chem., 21, 779, 10.1016/j.jiec.2014.04.012

Li, 2009, Synergistic effect between anatase and rutile TiO 2 nanoparticles in dye-sensitized solar cells, Dalton Trans., 10078, 10.1039/b908686b

Qamar, 2005, Photocatalytic degradation of two selected dye derivatives, chromotrope 2 B and amido black 10B, in aqueous suspensions of titanium dioxide, Dyes Pigm., 65, 1, 10.1016/j.dyepig.2004.06.006

Rauf, 2009, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J., 151, 10, 10.1016/j.cej.2009.02.026

Sirtori, 2010, Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways, Water Res., 44, 2735, 10.1016/j.watres.2010.02.006

Pastrana-Martínez, 2015, Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water, Water Res., 77, 179, 10.1016/j.watres.2015.03.014

Yap, 2011, Effect of aqueous matrix species on synergistic removal of bisphenol—a under solar irradiation using nitrogen-doped TiO2/AC composite, Appl. Catal. B: Environ., 101, 709, 10.1016/j.apcatb.2010.11.013

Malato, 2009, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147, 1, 10.1016/j.cattod.2009.06.018

Ollis, 1991, Photocatalyzed destruction of water contaminants, Environ. Sci. Technol., 25, 1522, 10.1021/es00021a001

Ahmed, 2010, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 261, 3, 10.1016/j.desal.2010.04.062

Kabra, 2004, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Ind. Eng. Chem. Res., 43, 7683, 10.1021/ie0498551

Cámara, 2016, Photocatalytic activity of TiO2 films prepared by surfactant-mediated sol–gel methods over commercial polymer substrates, Chem. Eng. J., 283, 535, 10.1016/j.cej.2015.07.080

Gaya, 2008, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals progress and problems, J. Photochem. Photobiol. C: Photochem. Rev., 9, 1, 10.1016/j.jphotochemrev.2007.12.003

Ray, 1998, Development of a new photocatalytic reactor for water purification, Catal. Today, 40, 73, 10.1016/S0920-5861(97)00123-5

Reddy, 2015, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis, Appl. Catal. A: Gen., 489, 1, 10.1016/j.apcata.2014.10.001

Van Gerven, 2007, A review of intensification of photocatalytic processes, Chem. Eng. Process: Process Intensif., 46, 781, 10.1016/j.cep.2007.05.012

Alrousan, 2012, Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors, Appl. Catal. B: Environ., 128, 126, 10.1016/j.apcatb.2012.07.038

Wang, 2012, Membrane vis-LED photoreactor for simultaneous penicillin G degradation and TiO2 separation, Water Res., 46, 1825, 10.1016/j.watres.2011.12.057

Chin, 2007, Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor, Chem. Eng. J., 130, 53, 10.1016/j.cej.2006.11.008

Thiruvenkatachari, 2008, A review on UV/TiO2 photocatalytic oxidation process (Journal Review), Korean J. Chem. Eng., 25, 64, 10.1007/s11814-008-0011-8

Shan, 2010, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review, Appl. Catal. A: Gen., 389, 1, 10.1016/j.apcata.2010.08.053

Hajaghazadeh, 2014, Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV—a light in an LED-fluidized bed reactor, Catal. Today, 230, 79, 10.1016/j.cattod.2013.08.020

McCullagh, 2011, Photocatalytic reactors for environmental remediation: a review, J. Chem. Technol. Biotechnol., 86, 1002, 10.1002/jctb.2650

Vaiano, 2015, Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation, Appl. Catal. B: Environ., 170–171, 153, 10.1016/j.apcatb.2015.01.039

Mukherjee, 1999, Major challenges in the design of a large-scale photocatalytic reactor for water treatment, Chem. Eng. Technol., 22, 10.1002/(SICI)1521-4125(199903)22:3<253::AID-CEAT253>3.0.CO;2-X

Braham, 2009, Review of major design and scale-up considerations for solar photocatalytic reactors, Ind. Eng. Chem. Res., 48, 8890, 10.1021/ie900859z

Twu, 2015, Properties of TiO2 films deposited on flexible substrates using direct current magnetron sputtering and using high power impulse magnetron sputtering, Polym. Degrad. Stab., 117, 1, 10.1016/j.polymdegradstab.2015.03.010

Echavia, 2009, Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel, Chemosphere, 76, 595, 10.1016/j.chemosphere.2009.04.055

Shi, 2009, Preparation of Fe(III) and Ho(III) co-doped TiO2 films loaded on activated carbon fibers and their photocatalytic activities, Chem. Eng. J., 151, 241, 10.1016/j.cej.2009.02.034

Lei, 2010, Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells, J. Phys. Chem. C, 114, 15228, 10.1021/jp105780v

Portela, 2011, Solar/lamp-irradiated tubular photoreactor for air treatment with transparent supported photocatalysts, Appl. Catal. B: Environ., 105, 95, 10.1016/j.apcatb.2011.03.039

Hug, 2001, Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters, Environ. Sci. Technol., 35, 2114, 10.1021/es001551s

Shang, 2003, Photocatalytic degradation of polystyrene plastic under fluorescent light, Environ. Sci. Technol., 37, 4494, 10.1021/es0209464

Sánchez, 2006, Preparation of TiO2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase, Appl. Catal. B: Environ., 66, 295, 10.1016/j.apcatb.2006.03.021

Portela, 2007, Selection of TiO 2-support: UV-transparent alternatives and long-term use limitations for H 2S removal, Catal. Today, 129, 223, 10.1016/j.cattod.2007.08.005

Gao, 2005, Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film, Mater. Chem. Phys., 92, 604, 10.1016/j.matchemphys.2005.02.018

Janssens, 2013

Loddo, 2010

Chen, 2000, Effect of mass transfer and catalyst layer thickness on photocatalytic reaction, AIChE J., 46, 1034, 10.1002/aic.690460515

Mukherjee, 1999, Major challenges in the design of a large-scale photocatalytic reactor for water treatment, Chem. Eng. Technol., 22, 253, 10.1002/(SICI)1521-4125(199903)22:3<253::AID-CEAT253>3.0.CO;2-X

Li Puma, 2008, Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper, J. Hazard. Mater., 157, 209, 10.1016/j.jhazmat.2008.01.040

Mahmoodi, 2011, Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon), J. Alloys Compd., 509, 4754, 10.1016/j.jallcom.2011.01.146

Comparelli, 2005, Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates, Appl. Catal. B: Environ., 55, 81, 10.1016/j.apcatb.2004.07.011

Jung, 2005, Effect of TiO2 thin film thickness and specific surface area by low-pressure metal–organic chemical vapor deposition on photocatalytic activities, Appl. Catal. B: Environ., 55, 253, 10.1016/j.apcatb.2004.08.009

Chen, 2007, A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate, Appl. Catal. A: Gen., 317, 129, 10.1016/j.apcata.2006.10.025

Djafer, 2010, Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties, Sep. Purif. Technol., 75, 198, 10.1016/j.seppur.2010.08.001

Loddo, 1998, Preparation and characterization of Al2O3 supported TiO2 catalysts employed for 4-nitrophenol photodegradation in aqueous medium, Mater. Chem. Phys., 53, 217, 10.1016/S0254-0584(98)00041-8

Pucher, 2007, Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst, Appl. Catal. A: Gen., 332, 297, 10.1016/j.apcata.2007.08.031

Orlanducci, 2006, Nanocrystalline TiO2 on single walled carbon nanotube arrays: towards the assembly of organized C/TiO2 nanosystems, Carbon, 44, 2839, 10.1016/j.carbon.2006.03.018

Chowdhury, 2005, Photocatalytic polypyrrole-TiO2-nanoparticles composite thin film generated at the air-water interface, Langmuir, 21, 4123, 10.1021/la0475425

Khataee, 2011, Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: destruction pathway and response surface approach, Desalination, 268, 126, 10.1016/j.desal.2010.10.008

Kim, 2009, Immobilization of TiO2 on an ITO substrate to facilitate the photoelectrochemical degradation of an organic dye pollutant, Electrochim. Acta, 54, 5715, 10.1016/j.electacta.2009.05.018

Kontos, 2008, Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology, Nanotechnology, 20

Mascolo, 2007, Photocatalytic degradation of methyl red by TiO2: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst, J. Hazard. Mater., 142, 130, 10.1016/j.jhazmat.2006.07.068

Cámara, 2014, Enhanced photocatalytic activity of TiO2 thin films on plasma-pretreated organic polymers, Catal. Today, 230, 145, 10.1016/j.cattod.2013.10.049

Matsuzawa, 2008, Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase, Appl. Catal. B: Environ., 83, 39, 10.1016/j.apcatb.2008.01.036

Na, 2005, Photocatalytic decolorization of rhodamine B by immobilized TiO2/UV in a fluidized-bed reactor, Korean J. Chem. Eng., 22, 196, 10.1007/BF02701484

Chong, 2009, Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst, Microporous Mesoporous Mater., 117, 233, 10.1016/j.micromeso.2008.06.039

Pozzo, 1997, Supported titanium oxide as photocatalyst in water decontamination: state of the art, Catal. Today, 39, 219, 10.1016/S0920-5861(97)00103-X

Liuxue, 2007, Photocatalytic activity of anatase thin films coated cotton fibers prepared via a microwave assisted liquid phase deposition process, Surf. Coat. Technol., 201, 7607, 10.1016/j.surfcoat.2007.02.004

Ahmad, 2015, Well-organized, mesoporous nanocrystalline immobilized TiO2 membranes with improved photocatalytic activity

Mansourpanah, 2009, Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability, J. Membr. Sci., 330, 297, 10.1016/j.memsci.2009.01.001

Molinari, 2000, Study on a photocatalytic membrane reactor for water purification, Catal. Today, 55, 71, 10.1016/S0920-5861(99)00227-8

Ma, 2009, Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification, J. Membr. Sci., 335, 58, 10.1016/j.memsci.2009.02.040

Goei, 2013, High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: fabrication, characterizations and performances, Chem. Eng. J., 228, 1030, 10.1016/j.cej.2013.05.068

Goei, 2014, Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities, Water Res., 59, 207, 10.1016/j.watres.2014.04.025

Ahmad, 2015, Organic fouling and membrane performance in hybrid photocatalytic TiO2-coated ceramic membrane system

Liu, 2012, Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane, Water Res., 46, 1101, 10.1016/j.watres.2011.12.009

Zhang, 2008, TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water, J. Membr. Sci., 313, 44, 10.1016/j.memsci.2007.12.045

Zhu, 2004, Hydrogen titanate nanofibers covered with anatase nanocrystals: a delicate structure achieved by the wet chemistry reaction of the titanate nanofibers, J. Am. Chem. Soc., 126, 8380, 10.1021/ja048204t

Subrahmanyam, 2008, Pumice stone supported titanium dioxide for removal of pathogen in drinking water and recalcitrant in wastewater, Sol. Energy, 82, 1099, 10.1016/j.solener.2008.05.007

Ghaly, 2014, ZnO/spiral-shaped glass for solar photocatalytic oxidation of Reactive Red 120, Arab. J. Chem.

Prado, 2010, Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity, Sol. Energy Mater. Sol. Cells, 94, 1081, 10.1016/j.solmat.2010.02.031

Prevo, 2005, Convective assembly of antireflective silica coatings with controlled thickness and refractive index, Chem. Mater., 17, 3642, 10.1021/cm050416h

Kesmez, 2009, Sol–gel preparation and characterization of anti-reflective and self-cleaning SiO2–TiO2 double-layer nanometric films, Sol. Energy Mater. Sol. Cells, 93, 1833, 10.1016/j.solmat.2009.06.022

Li, 2009, Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings, J. Mater. Chem., 19, 1806, 10.1039/b821967b

Liu, 2008, Superhydrophilic and antireflective properties of silica nanoparticle coatings fabricated via layer-by-layer assembly and postcalcination, J. Phys. Chem. C, 113, 148, 10.1021/jp808324c

Xie, 2008, The fabrication of subwavelength anti-reflective nanostructures using a bio-template, Nanotechnology, 19, 10.1088/0957-4484/19/9/095605

Faustini, 2010, Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells, Chem. Mater., 22, 4406, 10.1021/cm100937e

Song, 2000, Application of the sol-gel technique to polyoxometalates: towards a new chemically modified electrode, Electrochim. Acta, 45, 1639, 10.1016/S0013-4686(99)00326-6

Li, 2010, Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles, Langmuir, 26, 13528, 10.1021/la1016824

Moghal, 2012, High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles, ACS Appl. Mater. Interfaces, 4, 854, 10.1021/am201494m

Krogman, 2005, Anti-reflective optical coatings incorporating nanoparticles, Nanotechnology, 16, 10.1088/0957-4484/16/7/005

Ahmad, 2014, Bimodal UV-assisted nano-TiO2 catalyst—crumb rubber device for treatment of contaminated water, Aquananotechnol.: Global Prospects, 10.1201/b17455-6

Shannon, 2008, Science and technology for water purification in the coming decades, Nature, 452, 301, 10.1038/nature06599

López-Muñoz, 2011, Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2, Appl. Catal. B: Environ., 104, 220, 10.1016/j.apcatb.2011.03.029

Hernández-Ramírez, 2014

McCullagh, 2007, The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review, Res. Chem. Intermed., 33, 359, 10.1163/156856707779238775

Robertson, 2012, Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis, J. Hazard. Mater., 211–212, 161, 10.1016/j.jhazmat.2011.11.058

McCullagh, 2007, The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review, Res. Chem. Intermed., 33, 359, 10.1163/156856707779238775

Nelson, 2013, Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination, Environ. Sci. Pollut. Res., 20, 5441, 10.1007/s11356-013-1564-6

Wang, 2012, Synergistic effect of the sequential use of UV irradiation and chlorine to disinfect reclaimed water, Water Res., 46, 1225, 10.1016/j.watres.2011.12.027

Guan, 2012, Application of titanium dioxide in arsenic removal from water: a review, J. Hazard. Mater., 215–216, 1, 10.1016/j.jhazmat.2012.02.069

Yepsen, 2015, Photocatalytic degradation of thimerosal in human vaccine's residues and mercury speciation of degradation by-products, Microchem. J., 121, 41, 10.1016/j.microc.2015.02.001

Yang, 2012, Photocatalytic removal of Cr(VI) with illuminated TiO2, Desalin. Water Treat., 46, 375, 10.1080/19443994.2012.677564

Zheng, 2015, Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis, Molecules, 20, 2622, 10.3390/molecules20022622

Haenel, 2010, Photocatalytic activity of TiO2 immobilized on glass beads, Physicochem. Probl. Miner. Process., 45, 49

Agustina, 2005, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment, J. Photochem. Photobiol. C: Photochem. Rev., 6, 264, 10.1016/j.jphotochemrev.2005.12.003

Alinsafi, 2007, Treatment of textile industry wastewater by supported photocatalysis, Dyes Pigm., 74, 439, 10.1016/j.dyepig.2006.02.024

Han, 2009, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal. A: Gen., 359, 25, 10.1016/j.apcata.2009.02.043

Ahmad, 2014

Karabelas, 2009, Impact of European legislation on marketed pesticides—a view from the standpoint of health impact assessment studies, Environ. Int., 35, 1096, 10.1016/j.envint.2009.06.011

Abdennouri, 2011, Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays, Arab. J. Chem.

Rathore, 2012

De Lasa, 2005

Cruz, 2015, Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix, Appl. Surf. Sci.

Carbajo, 2014, Effect of water composition on the photocatalytic removal of pesticides with different TiO2 catalysts, Environ. Sci. Pollut. Res. Int., 21, 12233, 10.1007/s11356-014-3111-5

Muneer, 2005, Heterogeneous photocatalysed reaction of three selected pesticide derivatives propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide, Chemosphere, 61, 457, 10.1016/j.chemosphere.2005.03.006

Qamar, 2006, Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide, J. Environ. Manage., 80, 99, 10.1016/j.jenvman.2005.09.002

Pichat, 2004, Field solar photocatalytic purification of pesticides-containing rinse waters from tractor cisterns used for grapevine treatment, Sol. Energy, 77, 533, 10.1016/j.solener.2004.03.023

Sun, 2012, Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity, Nanoscale, 4, 613, 10.1039/C1NR11411E

Chang, 2011, In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries, Chem. Commun., 47, 4252, 10.1039/c1cc10631g

Huang, 2013, Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond, ACS Catal., 3, 1477, 10.1021/cs400080w

Zhou, 2009, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization, Appl. Phys. Lett., 94, 191103, 10.1063/1.3133358

Rao, 2016, Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water, Chem. Eng. J., 302, 633, 10.1016/j.cej.2016.05.095

Athanasekou, 2014, Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light, Appl. Catal. B: Environ., 158–159, 361, 10.1016/j.apcatb.2014.04.012

Cao, 2010, A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials, Adv. Mater., 22, 103, 10.1002/adma.200901920

Pastrana-Martínez, 2012, Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye, Appl. Catal. B: Environ., 123–124, 241, 10.1016/j.apcatb.2012.04.045

Julkapli, 2015, Graphene supported heterogeneous catalysts: an overview, Int. J. Hydrogen Energy, 40, 948, 10.1016/j.ijhydene.2014.10.129

Pastrana-Martínez, 2013, TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/vis and visible light, Chem. Eng. J., 224, 17, 10.1016/j.cej.2012.11.040

Štengl, 2013, TiO2-graphene oxide nanocomposite as advanced photocatalytic materials, Chem. Cent. J., 7, 1, 10.1186/1752-153X-7-41

Rui, 2016, 343

Pastrana-Martínez, 2014, Role of oxygen functionalities on the synthesis of photocatalytically active graphene–TiO2 composites, Appl. Catal. B: Environ., 158–159, 329, 10.1016/j.apcatb.2014.04.024

Liu, 2014, The structure, morphology and photocatalytic activity of graphene-TiO2 multilayer films and charge transfer at the interface, New J. Chem., 38, 2362, 10.1039/c3nj01003a

Yap, 2010, Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption–photocatalytic degradation of aqueous bisphenol—a using solar light, Catal. Today, 151, 8, 10.1016/j.cattod.2010.01.012

Hou, 2012, Preparation, characterization and performance of a novel visible light responsive spherical activated carbon-supported and Er3+:YFeO3-doped TiO2 photocatalyst, J. Hazard. Mater., 199–200, 301, 10.1016/j.jhazmat.2011.11.011

Lim, 2011, TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation, Crit. Rev. Environ. Sci. Technol., 41, 1173, 10.1080/10643380903488664

Gao, 2011, Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO 2: effect of activated carbon support and aqueous anions, Chem. Eng. J., 171, 1098, 10.1016/j.cej.2011.05.006

Dong, 2012, Preparation of spherical activated carbon-supported and Er 3+: YAlO 3-doped TiO 2 photocatalyst for methyl orange degradation under visible light, Trans. Nonferr. Metals Soc. China, 22, 2477, 10.1016/S1003-6326(11)61488-X

Liu, 2006, Preparation and application of efficient TiO 2/ACFs photocatalyst, J. Environ. Sci., 18, 979, 10.1016/S1001-0742(06)60025-9

Asiltürk, 2015, Preparation, characterization and photocatalytic activities of TiO2-coated activated carbon catalysts for rhodamine B photodegradation, Bull. Korean Chem. Soc., 36, 455

Yap, 2012, Solar regeneration of powdered activated carbon impregnated with visible-light responsive photocatalyst: factors affecting performances and predictive model, Water Res., 46, 3054, 10.1016/j.watres.2012.03.008

Dong, 2015, Visible-light photocatalytic degradation of methyl orange over spherical activated carbon-supported and Er3+: YAlO3-doped TiO2 in a fluidized bed, J. Chem. Technol. Biotechnol., 90, 880, 10.1002/jctb.4391

Yap, 2011, Nitrogen-doped TiO 2/AC bi-functional composite prepared by two-stage calcination for enhanced synergistic removal of hydrophobic pollutant using solar irradiation, Catal. Today, 161, 46, 10.1016/j.cattod.2010.09.024

Rivera-Utrilla, 2011, Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater., 187, 1, 10.1016/j.jhazmat.2011.01.033

Liu, 2007, Low-temperature preparation and microwave photocatalytic activity study of TiO 2-mounted activated carbon, J. Hazard. Mater., 142, 208, 10.1016/j.jhazmat.2006.08.020

Fu, 2015, Improved performance of surface functionalized TiO 2/activated carbon for adsorption–photocatalytic reduction of Cr (VI) in aqueous solution, Mater. Sci. Semicond. Process., 39, 362, 10.1016/j.mssp.2015.05.034

Wang, 2011, Carbon-sensitized and nitrogen-doped TiO2 for photocatalytic degradation of sulfanilamide under visible-light irradiation, Water Res., 45, 5015, 10.1016/j.watres.2011.07.002

Abdullah, 2015, Carbon/nitrogen-doped TiO 2: new synthesis route, characterization and application for phenol degradation, Arab. J. Chem., 9, 229, 10.1016/j.arabjc.2015.04.027

Emeline, 2008, Visible-light-active titania photocatalysts: the case of N-doped s—properties and some fundamental issues, Int. J. Photoenergy, 2007, 19

Fagan, 2016, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process., 42, 2, 10.1016/j.mssp.2015.07.052

Etacheri, 2015, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1, 10.1016/j.jphotochemrev.2015.08.003

Di Valentin, 2007, N-doped TiO 2: theory and experiment, Chem. Phys., 339, 44, 10.1016/j.chemphys.2007.07.020

Khan, 2002, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297, 2243, 10.1126/science.1075035

Etacheri, 2010, Highly visible light active TiO2- x N x heterojunction photocatalysts, Chem. Mater., 22, 3843, 10.1021/cm903260f

Li, 2008, Heavily nitrogen-doped dual-phase titanium oxide thin films by reactive sputtering and rapid thermal annealing, J. Am. Ceram. Soc., 91, 3167, 10.1111/j.1551-2916.2008.02608.x

Yu, 2009, Synthesis and characterization of N-doped TiO2 nanowires with visible light response, Catal. Lett., 129, 507, 10.1007/s10562-008-9832-7

Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051

Nosaka, 2005, Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds, Sci. Technol. Adv. Mater., 6, 143, 10.1016/j.stam.2004.11.006

Li, 2015, Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis, Appl. Catal. B: Environ., 164, 352, 10.1016/j.apcatb.2014.09.053

Yuan, 2008, Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity, Microporous Mesoporous Mater., 110, 501, 10.1016/j.micromeso.2007.06.039

Hao, 2009, Low temperature synthesis of crystalline mesoporous titania with high photocatalytic activity by post-treatment in nitric acid ethanol solution, Mater. Lett., 63, 106, 10.1016/j.matlet.2008.09.020

Shu, 2012, Mesoscopic nitrogen-doped TiO2 spheres for quantum dot-sensitized solar cells, Electrochim. Acta, 68, 166, 10.1016/j.electacta.2012.02.068

Nam, 2005, The influence of Na+ on the crystallite size of TiO2 and the photocatalytic activity, Res. Chem. Intermed., 31, 365, 10.1163/1568567053956725

Su, 2014, Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides, RSC Adv., 4, 13979, 10.1039/C3RA47757F

Wang, 2013, Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (0 0 1) facets, Appl. Catal. B: Environ., 134–135, 198, 10.1016/j.apcatb.2013.01.006

Zuo, 2012, Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity, Angew. Chem. Int. Ed., 51, 6223, 10.1002/anie.201202191

Islam, 2016, Hydrazine-based synergistic Ti(III)/N doping of surfactant-templated TiO2 thin films for enhanced visible light photocatalysis, Mater. Chem. Phys., 182, 382, 10.1016/j.matchemphys.2016.07.046

Zhang, 2014, Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR, Appl. Catal. B: Environ., 144, 614, 10.1016/j.apcatb.2013.07.058

Wu, 2014, Annealing-free synthesis of CN co-doped TiO2 hierarchical spheres by using amine agents via microwave-assisted solvothermal method and their photocatalytic activities, J. Alloys Compd., 604, 164, 10.1016/j.jallcom.2014.03.023

Wang, 2011, Effect of hexamethylenetetramine on the visible-light photocatalytic activity of CN codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity, Appl. Cata. A: Gen., 399, 233, 10.1016/j.apcata.2011.04.002

Giannakas, 2013, Photocatalytic activity of N-doped and N–F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: an EPR study, Appl. Catal. B: Environ., 132–133, 460, 10.1016/j.apcatb.2012.12.017

Giannakas, 2013, Preparation, characterization of N-I co-doped TiO2 and catalytic performance toward simultaneous Cr(VI) reduction and benzoic acid oxidation, Appl. Catal. B: Environ., 140–141, 636, 10.1016/j.apcatb.2013.04.052

Giannakas, 2016, Characterization and catalytic performance of B-doped, B-N co-doped and B-N-F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation, Appl. Catal. B: Environ., 184, 44, 10.1016/j.apcatb.2015.11.009

Antonopoulou, 2016, Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N,S-codoped TiO2 photocatalysts, Chem. Eng. J.

Pelaez, 2009, Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water, Catal. Today, 144, 19, 10.1016/j.cattod.2008.12.022

Huo, 2008, Highly active La2O3/Ti1-xBxO2 visible light photocatalysts prepared under supercritical conditions, Appl. Catal. B: Environ., 83, 78, 10.1016/j.apcatb.2008.02.005

Yang, 2013, Enhanced visible-light activity of F-N co-doped TiO2 nanocrystals via nonmetal impurity, Ti3+ ions and oxygen vacancies, Appl. Surf. Sci., 287, 135, 10.1016/j.apsusc.2013.09.094

Yu, 2006, Preparation characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders, J. Mol. Catal. A: Chem., 246, 176, 10.1016/j.molcata.2005.10.034

Wang, 2010, Solvothermal synthesis of CN codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor, Appl. Catal. B: Environ., 100, 355, 10.1016/j.apcatb.2010.08.012

Wang, 2011, C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation, Appl. Cata. A: Gen., 399, 252, 10.1016/j.apcata.2011.04.008

Jiang, 2014, Pr, N, and P tri-doped anatase TiO2 nanosheets with enhanced photocatalytic activity under sunlight, Chin. J. Catal., 35, 1068, 10.1016/S1872-2067(14)60047-4

Jiang, 2016, Synergetic effects of lanthanum, nitrogen and phosphorus tri-doping on visible-light photoactivity of TiO2 fabricated by microwave-hydrothermal process, J. Rare Earths, 34, 604, 10.1016/S1002-0721(16)60068-6

Irie, 2003, Nitrogen-concentration dependence on photocatalytic activity of TiO2-x N x powders, J. Phys. Chem. B, 107, 5483, 10.1021/jp030133h

Shao, 2015, Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol, Appl. Surf. Sci., 324, 35, 10.1016/j.apsusc.2014.10.108

Etacheri, 2013, A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications, ACS Appl. Mater. Interfaces, 5, 1663, 10.1021/am302676a

Choi, 2004, Fabrication and characterization of C-doped anatase TiO2 photocatalysts, J. Mater. Sci., 39, 1837, 10.1023/B:JMSC.0000016198.73153.31

Chu, 2008, Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells, J. Nanopart. Res., 10, 357, 10.1007/s11051-007-9241-7

Wang, 2014, Tunable catalytic activities and selectivities of metal ion doped TiO2 nanoparticles – oxidation of organic compounds, Dalton Trans., 43, 1011, 10.1039/C3DT51987B

Bakar, 2016, A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts: a case study of possible sulfur doping through chemical protocol, J. Mol. Catal. A: Chem., 421, 1, 10.1016/j.molcata.2016.05.003

Dunnill, 2009, White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application, J. Mater. Chem., 19, 8747, 10.1039/b913793a

Teoh, 2007, Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid, Catal. Today, 120, 203, 10.1016/j.cattod.2006.07.049

Zhou, 2012, Facet-mediated photodegradation of organic dye over hematite architectures by visible light, Angew. Chem. Int. Ed., 51, 178, 10.1002/anie.201105028

Shankar, 2011, Synthesis and characterization of nano-titania photocatalyst loaded on Mo-MCM-41 support, Adv. Sci. Lett., 4, 89, 10.1166/asl.2011.1197

Su, 2016, Combination and hybridisation of treatments in dye wastewater treatment: a review, J. Environ. Chem. Eng., 10.1016/j.jece.2016.07.026

Hu, 2015, Nanostructured hexahedron of bismuth ferrite clusters: delicate synthesis processes and an efficient multiplex catalyst for organic pollutant degradation, RSC Adv., 5, 86891, 10.1039/C5RA16409E

Li, 2015, Diatomite-immobilized BiOI hybrid photocatalyst: facile deposition synthesis and enhanced photocatalytic activity, Appl. Surf. Sci., 353, 1179, 10.1016/j.apsusc.2015.07.049

Di, 2015, Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight, Appl. Catal. B: Environ., 168–169, 51, 10.1016/j.apcatb.2014.11.057

Kanjwal, 2016, Hybrid matrices of ZnO nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent, Mater. Chem. Phys., 181, 495, 10.1016/j.matchemphys.2016.06.086

W.H. Organization, 1999

Rasheed, 2013, A review of dengue as an emerging disease in Pakistan, Public Health, 127, 11, 10.1016/j.puhe.2012.09.006

Kerr, 2004

Li, 2008, Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light, Environ. Sci. Technol., 42, 6148, 10.1021/es7026086

Rincón, 2005, Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater, Catal. Today, 101, 331, 10.1016/j.cattod.2005.03.022

de Castro Medeiros, 2011, Modeling the dynamic transmission of dengue fever: investigating disease persistence, PLOS Negl. Trop. Dis., 5

Blake, 1999, Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Sep. Purif. Methods, 28, 1, 10.1080/03602549909351643

Zhao, 2003, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ., 38, 645, 10.1016/S0360-1323(02)00212-3

Pereira, 2014, A photocatalytic process for the eradication of dengue througḣ OH generation in the presence of sunlight and iron oxide, RSC Adv., 4, 63650, 10.1039/C4RA13435D

Ahmad, 2016, Well-organized, mesoporous nanocrystalline TiO2 on alumina membranes with hierarchical architecture: antifouling and photocatalytic activities, Catal. Today

Walker, 1995, Photoelectrochemical oxidation of aqueous phenol using titanium dioxide aerogel, J. Electroanal. Chem., 393, 137, 10.1016/0022-0728(95)04186-R

Yasin, 2014, Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation, Bioresour. Technol., 169, 637, 10.1016/j.biortech.2014.07.026

El Madani, 2015, Photodegradation of imazethapyr herbicide by using slurry and supported TiO 2: efficiency comparison, Arab. J. Chem., 8, 181, 10.1016/j.arabjc.2011.03.013

Papageorgiou, 2012, Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes, Water Res., 46, 1858, 10.1016/j.watres.2012.01.005

Wang, 2013, Evaluation of a submerged membrane vis-LED photoreactor (sMPR) for carbamazepine degradation and TiO2 separation, Chem. Eng. J., 215–216, 240, 10.1016/j.cej.2012.10.075

Molinari, 2002, Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification, J. Membr. Sci., 206, 399, 10.1016/S0376-7388(01)00785-2

Kim, 2013, Embedding TiO2 nanoparticles versus surface coating by layer-by-layer deposition on nanoporous polymeric films, Microporous Mesoporous Mater., 173, 121, 10.1016/j.micromeso.2013.02.011

Xi, 2001, Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration, Water Res., 35, 1256, 10.1016/S0043-1354(00)00378-X

Kim, 2010, The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment, Environ. Pollut., 158, 2335, 10.1016/j.envpol.2010.03.024

Goei, 2014, Asymmetric TiO 2 hybrid photocatalytic ceramic membrane with porosity gradient: effect of structure directing agent on the resulting membranes architecture and performances, Ceram. Int., 40, 6747, 10.1016/j.ceramint.2013.11.137

Ahmad, 2015, Well-organized, mesoporous nanocrystalline TiO2 membranes with hierarchical architecture: antifouling and photocatalytic activities

Nandi, 2009, Microfiltration of mosambi juice using low cost ceramic membrane, J. Food Eng., 95, 597, 10.1016/j.jfoodeng.2009.06.024

Liu, 2000, Photocatalytic degradation of dye sulforhodamine B: a comparative study of photocatalysis with photosensitization, New J. Chem., 24, 411, 10.1039/b001573n

D. Kwon, R. Ahmad, J. Kim, Organic fouling in alumina ceramic membrane combined with UV irradiation for the treatment of effluent organic matter from membrane bioreactor, Ho Chi Minh City, Vietnam, 2014.

J. Kim, M. Aslam, D. Kwon, R. Ahmad, J. Bae, P.L. McCarty, Interactions between GAC sizes, particle sizes and biofouling in anaerobic fluidized membrane bioreactor, Boston, USA, 2015.

​, 2016, Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling, Chem. Eng. J.

Ahmad, 2015, Mesoporous nanocrystalline TiO2 membranes with hierarchical architecture: antifouling and photocatalytic activities

Aslam, 2015, Analysis of membrane fouling with porous membrane filters by microbial suspensions for autotrophic nitrogen transformations, Sep. Purif. Technol., 146, 284, 10.1016/j.seppur.2015.03.042

Aslam, 2013, Fluidized media and membrane fouling in anaerobic fluidized membrane bioreactor

Kim, 2014, Low energy fouling control and its optimization in anaerobic fluidized bed membrane bioreactor for domestic wastewater treatment

Aslam, 2014, The effect of fluidized media characteristics on membrane fouling and energy consumption in anaerobic fluidized membrane bioreactors, Sep. Purif. Technol., 132, 10, 10.1016/j.seppur.2014.04.049

Bai, 2001, mufiltration of polydispersed suspension by a membrane screen/hollow-fiber composite module, Desalination, 140, 277, 10.1016/S0011-9164(01)00377-0

Guo, 2015, Virus removal and inactivation in a hybrid microfiltration–UV process with a photocatalytic membrane, Sep. Purif. Technol., 149, 245, 10.1016/j.seppur.2015.05.039

Szymański, 2015, Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane, Chem. Eng. J.

Azrague, 2007, A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water, Appl. Catal. B: Environ., 72, 197, 10.1016/j.apcatb.2006.10.007

Camera-Roda, 2007, Intensification of water detoxification by integrating photocatalysis and pervaporation, J. Solar Energy Eng., 129, 10.1115/1.2391204

Mozia, 2014, Performance of two photocatalytic membrane reactors for treatment of primary and secondary effluents, Catal. Today, 236, 135, 10.1016/j.cattod.2013.12.049

Molinari, 2014, Photocatalytic membrane reactors for hydrogen production from water, Int. J. Hydrogen Energy, 39, 7247, 10.1016/j.ijhydene.2014.02.174

Zhang, 2016, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: a critical review, Chem. Eng. J., 302, 446, 10.1016/j.cej.2016.05.071

Molinari, 2016, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review, Catal. Today

Ghauri, 2011, Biogas reactor design for dry process and generation of electricity on sustainable basis, Int. J. Chem. Environ. Eng., 414

Barthlott, 1977, Raster-Elektronenmikroskopie der Epidermis-Oberflachen von Spermatophyten, Trop. Subtrop. Pflanzenwelt, 19, 367

Hashem, 2009, An eco-friendly-novel approach for attaining wrinkle-free/soft-hand cotton fabric, Carbohydr. Polym., 78, 690, 10.1016/j.carbpol.2009.06.004

Joshi, 2012, Nanostructured coatings for super hydrophobic textiles, Bull. Mater. Sci., 35, 933, 10.1007/s12034-012-0391-6

Wong, 2006, Selected applications of nanotechnology in textiles, AUTEX Res. J., 6, 1, 10.1515/aut-2006-060101

Dawood, 2011, Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces, Langmuir, 27, 4126, 10.1021/la1050783

Anand, 2012, Enhanced condensation on lubricant-impregnated nanotextured surfaces, ACS Nano, 6, 10122, 10.1021/nn303867y

Bittoun, 2012, The role of multiscale roughness in the lotus effect: is it essential for super-hydrophobicity?, Langmuir, 28, 13933, 10.1021/la3029512

Smith, 2013, Droplet mobility on lubricant-impregnated surfaces, Soft Matter, 9, 1772, 10.1039/C2SM27032C

Shillingford, 2014, Fabrics coated with lubricated nanostructures display robust omniphobicity, Nanotechnology, 25, 10.1088/0957-4484/25/1/014019

Bedford, 2010, Photocatalytic self cleaning textile fibers by coaxial electrospinning, ACS Appl. Mater. Interfaces, 2, 2448, 10.1021/am1005089

Bedford, 2010, Photocatalytic self cleaning textile fibers by coaxial electrospinning, ACS Appl. Mater. Interfaces, 2, 2448, 10.1021/am1005089

Xu, 2012, Antifogging and antireflection coatings fabricated by integrating solid and mesoporous silica nanoparticles without any post-treatments, ACS Appl. Mater. Interfaces, 4, 3293, 10.1021/am300658e

Tang, 2009, Enhanced performance of crumb rubber filtration for ballast water treatment, Chemosphere, 74, 1396, 10.1016/j.chemosphere.2008.11.048

Dunlop, 2002, The photocatalytic removal of bacterial pollutants from drinking water, J. Photochem. Photobiol. A: Chem., 148, 355, 10.1016/S1010-6030(02)00063-1

Chen, 2012, Hydration and properties of nano-TiO 2 blended cement composites, Cem. Concr. Compos., 34, 642, 10.1016/j.cemconcomp.2012.02.009

Cassar, 2004, Photocatalysis of cementitious materials: clean buildings and clean air, MRS Bull., 29, 328, 10.1557/mrs2004.99

Levinson, 2010, A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products, Sol. Energy Mater. Sol. Cells, 94, 946, 10.1016/j.solmat.2009.12.012

Van Broekhuizen, 2011, Use of nanomaterials in the European construction industry and some occupational health aspects thereof, J. Nanopart. Res., 13, 447, 10.1007/s11051-010-0195-9

Hasanbeigi, 2012, Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review, Renew. Sustain. Energy Rev., 16, 6220, 10.1016/j.rser.2012.07.019

Chen, 2009, Photocatalytic construction and building materials: from fundamentals to applications, Build. Environ., 44, 1899, 10.1016/j.buildenv.2009.01.002

Xie, 2016, 217

Ohama, 2011

Churchill, 2013, Life-cycle cost analysis of highway noise barriers designed with photocatalytic cement, Struct. Infrastruct. Eng., 9, 983, 10.1080/15732479.2011.653574