Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light
Tóm tắt
As a highly active photocatalyst, g-C3N4/TiO2 heterojunction nanocomposites were in situ synthesized by hydro-thermal method and calcination using melamine as precursors. The morphology and chemical structure of the prepared photocatalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), SEM, UV-vis, and photoluminescence analysis (PLA). At last, the photocatalytic activities of g-C3N4/TiO2 nanocomposites to remove fluoride under simulated visible light were evaluated. Results showed that the fluoride removal rate of the prepared g-C3N4/TiO2 was about three times than pure g-C3N4 due to the rapid charge transfer and the efficient separation of photogenerated electron-hole pairs in heterojunctions between g-C3N4 and TiO2. Heterojunction g-C3N4/TiO2 display the excellent fluoride removal rate due to the rapid charge transfer and efficient separation of electron-hole pairs.
Tài liệu tham khảo
Lachheb H, Ahmed O, Houas A, Nogier JP (2011) Photocatalytic activity of TiO2–SBA-15 under UV and visible light. J Photochem Photobiol A Chem 226(1):1–8. https://doi.org/10.1016/j.jphotochem.2011.09.017
Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96
Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758
Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106(10):4428–4453. https://doi.org/10.1021/cr050172k
Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, Fu H (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun (Camb) 48(23):2858–2860. https://doi.org/10.1039/c2cc16434e
Anandan S, Miyauchi M (2012) Improved photocatalytic efficiency of a WO3 system by an efficient visible-light induced hole transfer. Chem Commun (Camb) 48(36):4323–4325. https://doi.org/10.1039/c2cc31162c
Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884. https://doi.org/10.1021/ja2025454
Chen D, Zhao F, Qi H, Rutherford M, Peng X (2010) Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem Mater 22(4):1437–1444. https://doi.org/10.1021/cm902516f
Zhang T, Ding Y, Tang H (2015) Generation of singlet oxygen over Bi(V)/Bi(III) composite and its use for oxidative degradation of organic pollutants. Chem Eng J 264:681–689. https://doi.org/10.1016/j.cej.2014.12.014
Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36(17):3872–3878
Zhang J, Zhang W, Wei L, Pu L, Liu J, Liu H, Li Y, Fan J, Ding T, Guo Z (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304(12): 1900374. https://doi.org/10.1002/mame.201900374
Xiao P, Lou J, Zhang H, Song W, Wu XL, Lin H, Chen J, Liu S, Wang X (2018) Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight. Catal Sci Technol 8(1):201–209. https://doi.org/10.1039/c7cy01784g
Liu S, Li H, Mo R, Chen Q, Yang S, Zhong J (2016) ZnSe sensitized and Co-Pi catalyzed TiO2 nanowire array photoanode for solar-driven water splitting. J Electrochem Soc 163(9):H744–H749. https://doi.org/10.1149/2.0221609jes
Chang S, Wang Q, Liu B, Sang Y, Liu H (2017) Hierarchical TiO2 nanonetwork-porous Ti 3D hybrid photocatalysts for continuous-flow photoelectrodegradation of organic pollutants. Catal Sci Technol 7(2):524–532. https://doi.org/10.1039/c6cy02150f
Kolen’ko YV, Garshev AV, Churagulov BR, Boujday S, Portes P, Colbeau-Justin C (2005) Photocatalytic activity of sol–gel derived titania converted into nanocrystalline powders by supercritical drying. J Photochem Photobiol A Chem 172(1):19–26. https://doi.org/10.1016/j.jphotochem.2004.11.004
Wu Y, Zhang J, Xiao L, Chen F (2009) Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Appl Catal B Environ 88(3–4):525–532. https://doi.org/10.1016/j.apcatb.2008.10.008
Cheng X, Liu H, Chen Q, Li J, Wang P (2013) Construction of N, S codoped TiO2 NCs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim Acta 103:134–142. https://doi.org/10.1016/j.electacta.2013.04.072
Periyat P, Divya AS, Warrier KGK (2012) Photocatalytic Cement by TiO2 Addition. Mater Sci Forum 712:65-72. https://doi.org/10.4028/www.scientific.net/MSF.712.65
Ai G, Li H, Liu S, Mo R, Zhong J (2015) Solar water splitting by TiO2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv Funct Mater 25(35):5706–5713. https://doi.org/10.1002/adfm.201502461
Liu Y, Ouyang Q, Li H, Chen M, Zhang Z, Chen Q (2018) Turn-on fluoresence sensor for Hg(2+) in food based on FRET between Aptamers-functionalized upconversion nanoparticles and gold nanoparticles. J Agric Food Chem 66(24):6188–6195. https://doi.org/10.1021/acs.jafc.8b00546
Tang Y, Song H, Su Y, Lv Y (2013) Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem 85(24):11876–11884. https://doi.org/10.1021/ac403517u
She X, Xu H, Xu Y, Yan J, Xia J, Xu L, Song Y, Jiang Y, Zhang Q, Li H (2014) Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. J Mater Chem A 2(8):2563–2570. https://doi.org/10.1039/c3ta13768f
Yang G, Zhu C, Du D, Zhu J, Lin Y (2015) Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7(34):14217–14231. https://doi.org/10.1039/c5nr03398e
Zhang J, Gao Y, Jiao Y, Pu L, Li S, Tang J, Zhang Y (2020) The graphene/Fe3O4 nanocomposites as electrode materials of supercapacitors. J Nanosci Nanotechnol 20(5):3164–3173. https://doi.org/10.1166/jnn.2020.17391
Duan J, Zhang Y, Yin Y, Li H, Wang J, Zhu L (2018) A novel “on-off-on” fluorescent sensor for 6-thioguanine and Hg2+ based on g-C3N4 nanosheets. Sensors Actuators B Chem 257:504–510. https://doi.org/10.1016/j.snb.2017.10.071
Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150–2176. https://doi.org/10.1002/adma.201500033
Rr H, Wang Gh, Tang H, Sun Ll XuC, Dy H (2016) Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B Environ 187:47–58. https://doi.org/10.1016/j.apcatb.2016.01.026
Guo YT, Jin S, Wang LB, He PG, Hu QK, Fan LZ, Zhou AG (2020) Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability. Ceram Int 46(11):19550–19556. https://doi.org/10.1016/j.ceramint.2020.05.008
Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075
Liu G, Pan J, Yin L, Irvine JTS, Li F, Tan J, Wormald P, Cheng HM (2012) Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres. Adv Funct Mater 22(15):3233–3238. https://doi.org/10.1002/adfm.201200414
Huang D, Niu C, Wang X, Lv X, Zeng G (2013) “Turn-on” fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal Chem 85(2):1164–1170. https://doi.org/10.1021/ac303084d
Ding H, Wu Y, Zou B, Lou Q, Zhang W, Zhong J, Lu L, Dai G (2016) Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J Hazard Mater 307:350–358. https://doi.org/10.1016/j.jhazmat.2015.12.062
Nam SW, Choi DJ, Kim SK, Her N, Zoh KD (2014) Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J Hazard Mater 270:144–152. https://doi.org/10.1016/j.jhazmat.2014.01.037
Zheng Y, Lin L, Wang B, Wang X (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem Int Ed Engl 54(44):12868–12884. https://doi.org/10.1002/anie.201501788
Wang XJ, Yang WY, Li FT, Xue YB, Liu RH, Hao YJ (2013) In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res 52(48):17140–17150. https://doi.org/10.1021/ie402820v
Jiao Y, Zhang J, Liu S, Liang Y, Li S, Zhou H, Zhang J (2018) The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci Adv Mater 10(12):1706–1713. https://doi.org/10.1166/sam.2018.3338
Zhang J, Zhang Z, Jiao Y, Yang H, Li Y, Zhang J, Gao P (2019) The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J Power Sources 419:99–105. https://doi.org/10.1016/j.jpowsour.2019.02.059
Zhang Z, Zhang J, Li S, Liu J, Dong M, Li Y, Lu N, Lei S, Tang J, Fan J, Guo Z (2019) Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos Part B Eng 176:107338. https://doi.org/10.1016/j.compositesb.2019.107338
Shiravand G, Badiei A, Ziarani GM (2017) Carboxyl-rich g-C3N4 nanoparticles: synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sensors Actuators B Chem 242:244–252. https://doi.org/10.1016/j.snb.2016.11.038
Li J, Wang H, Guo Z, Wang Y, Ma H, Ren X, Du B, Wei Q (2017) A “turn-off” fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Talanta 162:46–51. https://doi.org/10.1016/j.talanta.2016.09.066
El-Shabaan MM (2018) Impedance spectroscopy and AC conductivity studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride. J Electron Mater 47(5):2609–2616. https://doi.org/10.1007/s11664-018-6098-8
Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. https://doi.org/10.1021/acs.chemrev.6b00075
Wen Y, Rufford TE, Chen X, Li N, Lyu M, Dai L, Wang L (2017) Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38:368–376. https://doi.org/10.1016/j.nanoen.2017.06.009
Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582. https://doi.org/10.1016/j.surfrep.2008.10.001
Gao P, Gao Y, Zhang J, Zhang Z, Li Z, Xiong Q, Deng L, Zhou Q, Meng L, Du Y, Zuo T (2021) Plasmon enhanced perovskite solar cells with efficiency beyond 21%: the asynchronous synergistic effect of water and gold nanorods. ChemPlusChem 86(2): 291–297. https://doi.org/10.1002/cplu.202000792