Photocatalytic nitrogen fixation: the role of defects in photocatalysts

Journal of Materials Chemistry A - Tập 7 Số 34 - Trang 19616-19633
Ming Cheng1,2,3,4, Chong Xiao1,2,3,4, Yi Xie1,2,3,4
1CAS Centre for Excellence in Nanoscience
2Hefei
3Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, iCHEM, University of Science and Technology of China, Hefei, Anhui, P. R. China
4iChEM

Tóm tắt

This review summarizes the recent experimental and theoretical progress of various defects in catalysts for high nitrogen photofixation performance.

Từ khóa


Tài liệu tham khảo

A. Mittasch and W.Frankenburg , in Advances in Catalysis , ed. W. G. Frankenburg , V. I. Komarewsky and E. K. Rideal , Academic Press , 1950 , vol. 2 , pp. 81–104

Guo, 2019, J. Mater. Chem. A, 7, 3531, 10.1039/C8TA11201K

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Schrauzer, 1983, Proc. Natl. Acad. Sci. U. S. A., 80, 3873, 10.1073/pnas.80.12.3873

Medford, 2017, ACS Catal., 7, 2624, 10.1021/acscatal.7b00439

Schrauzer, 1977, J. Am. Chem. Soc., 99, 7189, 10.1021/ja00464a015

V. G. Bessergenev and E.Burkel , in Encyclopedia of Nanotechnology , ed. B. Bhushan , Springer Netherlands , Dordrecht , 2014 , pp. 1–20 , 10.1007/978-94-007-6178-0_100951-1

Kong, 2011, J. Am. Chem. Soc., 133, 16414, 10.1021/ja207826q

Li, 2015, Nat. Commun., 6, 5881, 10.1038/ncomms6881

Hirakawa, 2017, J. Am. Chem. Soc., 139, 10929, 10.1021/jacs.7b06634

Nakamura, 2000, J. Mol. Catal. A: Chem., 161, 205, 10.1016/S1381-1169(00)00362-9

Zhao, 2019, Adv. Mater., e1806482, 10.1002/adma.201806482

Hoshino, 2001, Chem.–Eur. J., 7, 2727, 10.1002/1521-3765(20010702)7:13<2727::AID-CHEM2727>3.0.CO;2-4

Huang, 2018, ACS Sustainable Chem. Eng., 6, 15954, 10.1021/acssuschemeng.8b04397

Zhang, 2019, Adv. Sci., 6, 1900053, 10.1002/advs.201900053

Bai, 2018, Nano Energy, 53, 296, 10.1016/j.nanoen.2018.08.058

Manh-Hiep, 2018, Catalysts, 8, 621, 10.3390/catal8120621

Azofra, 2016, Energy Environ. Sci., 9, 2545, 10.1039/C6EE01800A

Dong, 2015, J. Mater. Chem. A, 3, 23435, 10.1039/C5TA06540B

Ma, 2016, Appl. Surf. Sci., 379, 309, 10.1016/j.apsusc.2016.04.085

Li, 2016, RSC Adv., 6, 45931, 10.1039/C6RA08817A

Ma, 2016, J. Phys. Chem. Solids, 99, 51, 10.1016/j.jpcs.2016.08.008

Wu, 2016, Ceram. Int., 42, 6985, 10.1016/j.ceramint.2016.01.086

Hu, 2017, Appl. Catal., B, 201, 58, 10.1016/j.apcatb.2016.08.002

Trapnell, 1953, Proc. R. Soc. Lond. Ser A Math. Phys. Sci., 218, 566, 10.1098/rspa.1953.0125

Liu, 1991, Surf. Sci., 245, 289, 10.1016/0039-6028(91)90031-M

Zhou, 2018, J. Taiwan Inst. Chem. Eng., 83, 99, 10.1016/j.jtice.2017.11.028

Michalsky, 2015, Interface Focus, 5, 20140084, 10.1098/rsfs.2014.0084

Bilmes, 2000, J. Phys. Chem. B, 104, 9851, 10.1021/jp0010132

Thompson, 2005, Top. Catal., 35, 197, 10.1007/s11244-005-3825-1

Polarz, 2006, Angew. Chem., Int. Ed., 45, 2965, 10.1002/anie.200503068

Lai, 2012, J. Solid State Chem., 187, 103, 10.1016/j.jssc.2012.01.004

Pan, 2013, Nanoscale, 5, 3601, 10.1039/c3nr00476g

Zhang, 2008, J. Phys. Chem. C, 112, 747, 10.1021/jp077471t

Ai, 2009, Environ. Sci. Technol., 43, 4143, 10.1021/es9004366

Chang, 2010, Catal. Commun., 11, 460, 10.1016/j.catcom.2009.11.023

Cao, 2011, Catal. Commun., 13, 63, 10.1016/j.catcom.2011.06.019

Li, 2011, Dalton Trans., 40, 6751, 10.1039/c1dt10471c

Ye, 2013, Appl. Catal., B, 142, 1

Cheng, 2014, Nanoscale, 6, 2009, 10.1039/c3nr05529a

Ye, 2014, Environ. Sci.: Nano, 1, 90

Li, 2015, J. Am. Chem. Soc., 137, 6393, 10.1021/jacs.5b03105

Pichat, 1982, Can. J. Chem. Eng., 60, 27, 10.1002/cjce.5450600106

Linsebigler, 1995, Chem. Rev., 95, 735, 10.1021/cr00035a013

Diebold, 2003, Surf. Sci. Rep., 48, 53, 10.1016/S0167-5729(02)00100-0

Fujishima, 2008, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001

Yang, 2002, Mater. Lett., 57, 794, 10.1016/S0167-577X(02)00875-3

Jing, 2004, J. Solid State Chem., 177, 3375, 10.1016/j.jssc.2003.10.034

Batzill, 2006, Phys. Rev. Lett., 96, 026103, 10.1103/PhysRevLett.96.026103

Naldoni, 2012, J. Am. Chem. Soc., 134, 7600, 10.1021/ja3012676

Wang, 2013, Nat. Commun., 4, 2214, 10.1038/ncomms3214

Choudhury, 2013, Int. Nano Lett., 3, 25, 10.1186/2228-5326-3-25

Wu, 2012, J. Am. Chem. Soc., 134, 9369, 10.1021/ja302246b

Wang, 2018, Appl. Catal., B, 220, 290, 10.1016/j.apcatb.2017.08.049

Li, 2016, Nanoscale, 8, 1986, 10.1039/C5NR07380D

Fang, 2015, ACS Appl. Mater. Interfaces, 7, 13915, 10.1021/acsami.5b02641

Du, 2019, Appl. Catal., B, 248, 193, 10.1016/j.apcatb.2019.02.027

Wei, 2008, J. Hazard. Mater., 156, 135, 10.1016/j.jhazmat.2007.12.018

Han, 2011, Appl. Catal., B, 107, 77, 10.1016/j.apcatb.2011.06.039

Lee, 2018, Nanoscale, 10, 14254, 10.1039/C8NR02936A

Wang, 2018, Inorg. Chem. Front., 5, 1470, 10.1039/C8QI00305J

Hu, 2016, Catal. Sci. Technol., 6, 5884, 10.1039/C6CY00622A

Cao, 2016, RSC Adv., 6, 49862, 10.1039/C6RA08247E

Hu, 2016, ACS Sustainable Chem. Eng., 4, 2269, 10.1021/acssuschemeng.5b01742

Zhang, 2016, Dalton Trans., 45, 3497, 10.1039/C5DT04901F

Ho, 2004, Langmuir, 20, 5865, 10.1021/la049838g

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Zong, 2010, J. Phys. Chem. C, 114, 1963, 10.1021/jp904350e

Xiang, 2012, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n

Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945

Chen, 2015, Angew. Chem., Int. Ed., 54, 1210, 10.1002/anie.201410172

Lu, 2016, Adv. Mater., 28, 1917, 10.1002/adma.201503270

Sun, 2017, Appl. Catal., B, 200, 323, 10.1016/j.apcatb.2016.07.025

Mak, 2012, Nat. Mater., 12, 207, 10.1038/nmat3505

Lui, 2014, Phys. Rev. Lett., 113, 166801, 10.1103/PhysRevLett.113.166801

Laviron, 1974, J. Electroanal. Chem. Interfacial Electrochem., 52, 355, 10.1016/S0022-0728(74)80448-1

Wang, 2014, Chem. Soc. Rev., 43, 5234, 10.1039/C4CS00126E

Yuan, 2014, Energy Environ. Sci., 7, 3934, 10.1039/C4EE02914C

He, 2015, Appl. Catal., B, 168, 1

Radford, 1983, J. Chem. Soc., Chem. Commun., 1520, 10.1039/C39830001520

Soria, 1991, J. Phys. Chem., 95, 274, 10.1021/j100154a052

Navio, 1992, J. Mater. Sci., 27, 3036, 10.1007/BF01154116

Sclafani, 1993, Res. Chem. Intermed., 18, 211, 10.1163/156856792X00308

Zhao, 2014, Appl. Catal., B, 144, 468, 10.1016/j.apcatb.2013.07.047

Ranjit, 1995, J. Photochem. Photobiol., A, 89, 67, 10.1016/1010-6030(94)04029-2

Ranjit, 1996, J. Photochem. Photobiol., A, 96, 181, 10.1016/1010-6030(95)04290-3

Linnik, 2008, Mendeleev Commun., 18, 10, 10.1016/j.mencom.2008.01.004

Hoshino, 2000, Angew. Chem., Int. Ed., 39, 2509, 10.1002/1521-3773(20000717)39:14<2509::AID-ANIE2509>3.0.CO;2-I

Hoshino, 2008, Appl. Catal., B, 79, 81, 10.1016/j.apcatb.2007.10.007

Cao, 2017, Appl. Catal., B, 218, 600, 10.1016/j.apcatb.2017.07.013

Hu, 2016, RSC Adv., 6, 25695, 10.1039/C5RA28123G

Liang, 2017, New J. Chem., 41, 8920, 10.1039/C7NJ01848G

Wang, 2017, RSC Adv., 7, 18099, 10.1039/C7RA00097A

Qiu, 2018, Appl. Catal., B, 221, 27, 10.1016/j.apcatb.2017.09.010

Khan, 1988, Angew. Chem., Int. Ed. Engl., 27, 923, 10.1002/anie.198809231

Tennakone, 1993, Langmuir, 9, 723, 10.1021/la00027a019

Li, 2016, Chem.–Eur. J., 22, 13819, 10.1002/chem.201603277

Li, 2017, Angew. Chem., Int. Ed., 129, 8827, 10.1002/ange.201703301

Ye, 2017, Chem. Eng. J., 307, 311, 10.1016/j.cej.2016.08.102

Feng, 2018, Chem. Eng. J., 347, 849, 10.1016/j.cej.2018.04.157

Xing, 2018, ACS Sustainable Chem. Eng., 6, 14866, 10.1021/acssuschemeng.8b03388

Hao, 2016, Chem.–Eur. J., 22, 18722, 10.1002/chem.201604510

Yang, 2013, Acc. Chem. Res., 46, 1740, 10.1021/ar300361m

Wang, 2019, ACS Sustainable Chem. Eng., 7, 6430, 10.1021/acssuschemeng.8b06273

Huang, 2018, Sci. China: Chem., 61, 1187, 10.1007/s11426-018-9273-1

Liu, 2019, ACS Sustainable Chem. Eng., 7, 6813, 10.1021/acssuschemeng.8b06134

Li, 2019, Angew. Chem., Int. Ed., 58, 7035, 10.1002/anie.201902109

Zhao, 2019, Nat. Commun., 10, 1278, 10.1038/s41467-019-09290-y

Liu, 2019, Angew. Chem., Int. Ed., 58, 731, 10.1002/anie.201808177

Zhang, 2018, J. Am. Chem. Soc., 140, 9434, 10.1021/jacs.8b02076

Honkala, 2005, Science, 307, 555, 10.1126/science.1106435

Comer, 2018, ACS Sustainable Chem. Eng., 6, 4648, 10.1021/acssuschemeng.7b03652

Xie, 2017, J. Phys. Chem. C, 121, 16373, 10.1021/acs.jpcc.7b04811

Ling, 2018, J. Am. Chem. Soc., 140, 14161, 10.1021/jacs.8b07472

Ling, 2017, ACS Catal., 7, 5097, 10.1021/acscatal.7b01595

Shi, 2017, Nanoscale, 9, 533, 10.1039/C6NR06621F

Ouyang, 2018, J. Mater. Chem. A, 6, 2289, 10.1039/C7TA09828F

Wang, 2017, Adv. Mater., 29, 1701774, 10.1002/adma.201701774

Zhao, 2017, Adv. Mater., 29, 1703828, 10.1002/adma.201703828

Palmisano, 1988, J. Phys. Chem., 92, 6710, 10.1021/j100334a044

Ileperuma, 1990, Appl. Catal., 62, L1, 10.1016/S0166-9834(00)82226-5

Ileperuma, 1993, Sol. Energy Mater. Sol. Cells, 28, 335, 10.1016/0927-0248(93)90121-I

Miyama, 1980, Chem. Phys. Lett., 74, 523, 10.1016/0009-2614(80)85266-3

Janet, 2010, J. Phys. Chem. C, 114, 2622, 10.1021/jp908683x

Tennakone, 1992, J. Photochem. Photobiol., A, 68, 131, 10.1016/1010-6030(92)85176-U

Tennakone, 1989, Sol. Energy Mater., 18, 217, 10.1016/0165-1633(89)90055-5

Li, 1983, Chem. Lett., 12, 321, 10.1246/cl.1983.321

Zeng, 2015, Catal. Commun., 59, 40, 10.1016/j.catcom.2014.09.034

Lu, 2016, ACS Nano, 10, 10507, 10.1021/acsnano.6b06472

Yang, 2017, Carbon, 124, 72, 10.1016/j.carbon.2017.07.014