Photocatalytic hydrogen generation using glucose as electron donor over Pt/Cd x Zn1−x S solid solutions

Research on Chemical Intermediates - Tập 35 - Trang 739-749 - 2009
Shao-Qin Peng1, Yu-Jing Peng1, Yue-Xiang Li1, Gong-Xuan lu2, Shu-Ben Li2
1Department of Chemistry, Nanchang University, Nanchang, People’s Republic of China
2State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China

Tóm tắt

Cd x Zn1−x S solid solution photocatalysts were prepared by a hydrothermal process. The photocatalysts were characterized by X-ray diffraction (XRD), UV–vis diffusive reflectance spectroscopy (DRS), and transmission electron microscope (TEM) measurements. Using glucose as an electron donor, photocatalytic hydrogen generation over Pt/Cd x Zn1−x S was investigated. The results show that glucose not only improves the efficiency of photocatalytic hydrogen generation but prevents photocorrosion of Cd x Zn1−x S. Glucose was degraded effectively with the hydrogen generation. The factors which affect photocatalytic hydrogen generation, such as composition and structure of Cd x Zn1−x S solid solutions, irradiation time, initial concentration of the glucose, and concentration of NaOH were studied.

Tài liệu tham khảo

K. Domen, A. Kudo, T. Ohnishi, J. Catal. 102, 92 (1986)

Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 414, 625 (2001)

Y.X. Li, C.F. Xie, S.Q. Peng, G.X. Lu, S.B. Li, J. Mol. Catal. A: Chem. 282, 117 (2008)

Y.X. Li, J. Du, S.Q. Peng, D. Xie, G.X. Lu, S.B. Li, Int. J. Hydrogen Energy 33, 2007 (2008)

D. Jing, Y. Zhang, L. Guo, Chem. Phys. Lett. 415, 74 (2005)

T. Abe, E. Suzuki, K. Nagoshi, K. Miyashita, M. Kaneko, J. Phys. Chem. B 103, 1119 (1999)

Y.X. Li, G.X. Lu, S.B. Li, Chemosphere 52, 843 (2003)

M. Ni, D.Y.C. Leung, M.K.H. Leung, K. Sumathy, Fuel Process Technol. 87, 461 (2006)

W. Iwasaki, Int. J. Hydrogen Energy 28, 559 (2003)

Y.X. Li, Y.Z. Xie, S.Q. Peng, G.X. Lu, S.B. Li, Chem. J. Chin. Univ. 28, 156 (2007)

D.I. Kondarides, V.M. Daskalaki, A. Patsoura, X.E. Verykios, Catal. Lett. 122, 26 (2008)

X.L. Fu, J.L. Long, X.X. Wang, D.Y.C. Leung, Z.X. Ding, L. Wu, Z.Z. Zhang, Z.H. Li, X.Z. Fu, Int. J. Hydrogen Energy 33, 6484 (2008)

F. del Valle, A. Ishikawa, K. Domen, J.A. Villoria Mano, M.C. De la Sanchez-Sanchez, I.D. Gonzalez, S. Herreras, N. Mota, M.E. Rivas, M.C. Alvarez Galvan, J.L.G. Fierro, R.M. Navarro, Catal. Today 143, 51 (2009)

D.L. Chen, L. Gao, Solid State Commun. 133, 145 (2005)

Q.L. Nie, Q.L. Yuan, Q.S. Wang, Z.D. Xu, J. Mater. Sci. 39, 5611 (2004)

C.J. Xing, Y.J. Zhang, W. Yan, L.J. Guo, Int. J. Hydrogen Energy 31, 2018 (2006)

V. Kumar, V. Singh, S.K. Sharma, T.P. Sharma, Opt. Mater. 11, 29 (1998)

S.G. Zu, Z.Y. Wang, B. Liu, X.P. Fan, G.D. Qian, J. Alloys Compd. 476, 689 (2009)

I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc. 126, 13406 (2004)

K. Zhang, D.W. Jing, C.J. Xing, L.J. Guo, Int. J. Hydrogen Energy 32, 4685 (2007)

S. Arora, S.S. Manoharan, Opt. Mater. 31, 176 (2008)

H. Park, W. Choi, M.R. Hoffmann, J. Mater. Chem. 18, 2379 (2008)

S.Q. Peng, Y.X. Li, F.Y. Jiang, G.X. Lu, S.B. Li, Chem. Phys. Lett. 398, 235 (2004)

R.R. Bacsa, J. Kiwi, Appl. Catal. B: Environ. 16, 12 (1998)

M. Klare, J. Scheen, K. Vogelsang, H. Jacobs, J.A.C. Broekaert, Chemosphere 41, 353 (2000)

C.A. Bunton, G. Savelli, L. Sepulveda, J. Org. Chem. 43, 1925 (1978)

M.H. Du, J. Feng, S.B. Zhang, Zhang. Phys. Rev. Lett. 98, 066102 (2007)

D.B. Chu, X.H. Li, D.X. Feng, J.S. Gu, G.X. Shen, Acta Chimi. Sin. 62, 2403 (2004)

X.L. Wei, P.K. Shen, Chin. J. Chem. Phys. 16, 395 (2003)

Y.Z. Xie, Y.X. Li, S.Q. Peng, J. Nanchang Univ. (Eng. Technol.) 28, 209 (2006)