Photocatalytic efficiencies of Zn1-xMxO compounds synthesized with a broad panel of M elements: Responses in the UV, visible and solar range
Tài liệu tham khảo
Herrmann, 2005, Heterogeneous photocatalysis: State of the art and present applications, Top. Catal., 34, 49, 10.1007/s11244-005-3788-2
Malato, 2009, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today., 147, 1, 10.1016/j.cattod.2009.06.018
Herrmann, 2000, Photocatalytic degradation of pesticides in agricultural used waters, Comptes Rendus l’Académie Des Sci. - Ser. IIC - Chem., 3, 417
Robert, 2002, Solar photocatalysis: A clean process for water detoxification, Sci. Total. Environ., 291, 85, 10.1016/S0048-9697(01)01094-4
Galvez, 2003, Solar detoxification, United nations educ, Sci. Cult. Organ., 237
Guillard, 2003, Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications, Appl. Catal. B Environ., 46, 319, 10.1016/S0926-3373(03)00264-9
Janin, 2013, Solar photocatalytic mineralization of 2,4-dichlorophenol and mixtures of pesticides: kinetic model of mineralization, Sol. Energy., 87, 127, 10.1016/j.solener.2012.10.017
Cassano, 2000, Reaction engineering of suspended solid heterogeneous photocatalytic reactors, Catal. Today., 58, 167, 10.1016/S0920-5861(00)00251-0
Cassano, 1995, Photoreactor analysis and design: fundamentals and applications, Ind. Eng. Chem. Res., 34, 2155, 10.1021/ie00046a001
Plantard, 2014, Correlations between optical, specific surface and photocatalytic properties of media integrated in a photo-reactor, Chem. Eng. J., 252, 194, 10.1016/j.cej.2014.04.055
Serpone, 1997, Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis, J. Photochem. Photobiol. A Chem., 104, 1, 10.1016/S1010-6030(96)04538-8
Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013
Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004
Daghrir, 2013, Modified TiO2 for environmental photocatalytic applications : A review, Ind. Eng. Chem. Res., 52, 3581, 10.1021/ie303468t
Hernandez-Uresti, 2014, Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis, Ceram. Int., 40, 4767, 10.1016/j.ceramint.2013.09.022
Soltani, 2013, Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles, Sol. Energy, 97, 147, 10.1016/j.solener.2013.08.023
Dodd, 2006, Mechanochemical synthesis of nanocrystalline SnO2–ZnO photocatalysts, Nanotechnology, 17, 692, 10.1088/0957-4484/17/3/013
Zhou, 2015, Enhanced visible light photocatalytic activity of alkaline earth metal ions-doped CdSe/rGO photocatalysts synthesized by hydrothermal method, Appl. Catal. B Environ., 172–173, 174, 10.1016/j.apcatb.2015.01.004
Herrmann, 1999, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today., 53, 115, 10.1016/S0920-5861(99)00107-8
Navarro, 2009, Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight, J. Hazard. Mater., 172, 1303, 10.1016/j.jhazmat.2009.07.137
Mohapatra, 2014, Photocatalytic degradation of carbamazepine in wastewater by using a new class of whey-stabilized nanocrystalline TiO2 and ZnO, Sci. Total. Environ., 485–486, 263, 10.1016/j.scitotenv.2014.03.089
Carbajo, 2016, Study of application of titania catalysts on solar photocatalysis: influence of type of pollutants and water matrices, Chem. Eng. J., 291, 64, 10.1016/j.cej.2016.01.092
Demeestere, 2005, Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: parameter study and reaction pathways, Appl. Catal. B Environ., 60, 93, 10.1016/j.apcatb.2005.02.023
Sánchez, 2006, Preparation of TiO2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase, Appl. Catal. B Environ., 66, 295, 10.1016/j.apcatb.2006.03.021
Dvoranová, 2002, Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B Environ., 37, 91, 10.1016/S0926-3373(01)00335-6
Chatterjee, 2005, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C Photochem. Rev., 6, 186, 10.1016/j.jphotochemrev.2005.09.001
Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Djessas, 2014, Effects of indium concentration on the properties of in-doped ZnO films: applications to silicon wafer solar cells, Thin Solid Films., 555, 28, 10.1016/j.tsf.2013.08.109
Ben Ayadi, 2011, Effect of substrate temperature on the properties of Al-doped ZnO films sputtered from aerogel nanopowders for solar cells applications, Thin Solid Films., 519, 7572, 10.1016/j.tsf.2010.12.120
Plantard, 2011, Kinetic and efficiency of TiO2-coated on foam or tissue and TiO2-suspension in a photocatalytic reactor applied to the degradation of the 2,4-dichlorophenol, J. Photochem. Photobiol. A Chem., 222, 111, 10.1016/j.jphotochem.2011.05.009
Brinker, 1990
Agrios, 2005, State of the art and perspectives on materials and applications of photocatalysis over TiO2, J. Appl. Electrochem., 35, 655, 10.1007/s10800-005-1627-6
Minero, 2006, A quantitative evalution of the photocatalytic performance of TiO2 slurries, Appl. Catal., 67, 257, 10.1016/j.apcatb.2006.05.011
Emeline, 2000, Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions, J. Photochem. Photobiol. A Chem., 133, 89, 10.1016/S1010-6030(00)00225-2
Davydov, 2000, Quantification of the primary processes in aqueous heterogeneous photocatalysis using single-stage oxidation reactions, J. Catal., 191, 105, 10.1006/jcat.1999.2777
Serpone, 1999, Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I : suggested protocol, Pure Appl. Chem., 71, 303, 10.1351/pac199971020303
Fox, 1993, Heterogeneous photocatalysis, Chem. Rev., 93, 341, 10.1021/cr00017a016
Rosset, 2017, Correlation between gap energy and photocatalytic efficiencies of nanocatalyst under solar irradiation conditions, J. Mater. Sci. Mater. Electron., 28, 8739, 10.1007/s10854-017-6599-x
Plantard, 2012, Solar photocatalysis treatment of phytosanitary refuses: efficiency of industrial photocatalysts, Appl. Catal. B Environ., 115–116, 38, 10.1016/j.apcatb.2011.11.034
Elatmani, 2013, Innovative photocatalytic media optimized for solar-powered remediation: application to pyrimethanil treatment, Mater. Sci. Semicond. Process., 16, 1117, 10.1016/j.mssp.2013.03.004
Ada, 2008, Preparation and characterization of a ZnO powder with the hexagonal plate particles, Powder Technol., 181, 285, 10.1016/j.powtec.2007.05.015
Swanson, 1953
Bezou, 1995, Investigation of the crystal structure of γ-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder diffraction methods, J. Solid State Chem., 117, 165, 10.1006/jssc.1995.1260
Omri, 2016, Role of annealing temperature on electrical and optical properties of ZnO nanoparticles for renewable energy applications, J. Mater. Sci. Mater. Electron., 27, 226, 10.1007/s10854-015-3743-3
Kubelka, 1931, Ein beitrag zur optik der farbanstriche, zeitschrift für tech, Phys., 12, 593
Tauc, 1966, Optical properties and electronic structure of amorphous germanium, J. Phys. Status Solidi., 15, 627, 10.1002/pssb.19660150224
Nakamura, 2004, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes, J. Phys. Chem. B., 108, 10617, 10.1021/jp048112q
Banerjee, 2014, New insights into the mechanism of visible light photocatalysis, J. Phys. Chem. Lett., 5, 2543, 10.1021/jz501030x
Ibhadon, 2014, Heterogeneous photocatalysis: recent advances and applications, J. Catal., 3, 189
Samadi, 2015, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Films., 605, 2, 10.1016/j.tsf.2015.12.064
Shi, 2012, Red luminescent and structural properties of Mg-doped ZnO phosphors prepared by sol-gel method, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177, 689, 10.1016/j.mseb.2012.03.045
Benhebal, 2012, Photodegradation of phenol and benzoic acid by sol-gel-synthesized alkali metal-doped ZnO, Mater. Sci. Semicond. Process., 15, 264, 10.1016/j.mssp.2011.12.001
Jung, 2010, Syntheses and characterizations of transition metal-doped ZnO, Solid State Sci., 12, 466, 10.1016/j.solidstatesciences.2009.12.009
Hamilton, 2014, Evaluating the mechanism of visible light activity for N,F-TiO2 using photoelectrochemistry, J. Phys. Chem. C., 118, 12206, 10.1021/jp4120964
Ba-Abbad, 2013, Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol-gel technique, Chemosphere., 91, 1604, 10.1016/j.chemosphere.2012.12.055
Slama, 2011, Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder, Thin Solid Films., 519, 5792, 10.1016/j.tsf.2010.12.197
Etacheri, 2011, Oxygen rich titania: A dopant free, high temperature stable, and visible-light active anatase photocatalyst, Adv. Funct. Mater., 21, 3744, 10.1002/adfm.201100301
Rengifo-Herrera, 2009, Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light, Appl. Catal. B Environ., 88, 398, 10.1016/j.apcatb.2008.10.025
Ganesh, 2012, Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route, Appl. Surf. Sci., 259, 524, 10.1016/j.apsusc.2012.07.077
He, 2012, Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity, Mater. Chem. Phys., 132, 1035, 10.1016/j.matchemphys.2011.12.061
Iqbal, 2014, Influence of Mg doping level on morphology, optical, electrical properties and antibacterial activity of ZnO nanostructures, Ceram. Int., 40, 7487, 10.1016/j.ceramint.2013.12.099
Bloh, 2012, Transition metal-modified zinc oxides for UV and visible light photocatalysis, Environ. Sci. Pollut. Res., 19, 3688, 10.1007/s11356-012-0932-y
Gao, 2016, Correlation between oxygen vacancies and dopant concentration in Mn-doped ZnO nanoparticles synthesized by co-precipitation technique, J. Alloys Compd., 684, 669, 10.1016/j.jallcom.2016.05.227
Rahman, 2014, Study of structural and optical properties of Zn1−xAlxO nanoparticles, Mater. Sci. Semicond. Process., 18, 15, 10.1016/j.mssp.2013.09.024
Pál, 2008, Structural, optical and photoelectric properties of indium-doped zinc oxide nanoparticles prepared in dimethyl sulphoxide, colloids surfaces A physicochem, Eng. Asp., 318, 141, 10.1016/j.colsurfa.2007.12.028
Faisal, 2013, Highly efficient photocatalyst based on Ce doped ZnO nanorods: controllable synthesis and enhanced photocatalytic activity, Chem. Eng. J., 229, 225, 10.1016/j.cej.2013.06.004
Omri, 2014, Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol-gel method, Microelectron. Eng., 128, 53, 10.1016/j.mee.2014.05.029