Photocatalytic Oxidation of Hydrosulfide Ions by Molecular Oxygen Over Cadmium Sulfide Nanoparticles

Springer Science and Business Media LLC - Tập 6 - Trang 149-158 - 2004
A. E. Raevskaya1, A.L. Stroyuk1, S.Ya. Kuchmii1
1L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Tóm tắt

Photocatalytic activity of CdS nanoparticles in hydrosulfide-ions air oxidation was revealed and thoroughly investigated. HS− photooxidation in the presence of CdS nanoparticles results predominantly in the formation of SO3 2− and SO4 2− ions. Photocatalytic activity of ultrasmall CdS crystallites in HS– photooxidation is much more prononced as compared to bulk CdS crystals due to high surface area of nanoparticles, their negligible light scattering, improved separation of photogenerated charge carriers etc. It was shown that hydrosulfide ions can be oxidized in two ways. The first is HS− oxidation by the CdS valence band holes. This process rate depends on the rate of comparatively slow reaction between molecular oxygen and CdS conduction band electrons. The second reaction route is the chain-radical HS− oxidation induced by photoexcited CdS nanoparticles and propagating in the bulk of a solution. In conditions favourable to chain-radical oxidation of HS−(i.e. at low light intensities and CdS concentration and high oxygen and Na2S concentrations) quantum yields of the photoreaction reach 2.5.

Tài liệu tham khảo

Awatani T. & A. J. McQuillan., 1998. Adsorbed thiosulfate intermediate of cadmium sulfide aqueous photocorrosion detected and characterized by in situ infrared spectroscopy. J. Phys. Chem. 102, 4110–4113. Beydoun D., R. Amal, G. Low & S. McEvoy, 1999. Role of nanoparticles in photocatalysis. J. Nanoparticles Res. 1, 439–458. Benjamin D., & D. Huppert, 1988. Surface recombination velocity measurements of CdS single crystals immersed in electrolytes. A picosecond photolumi-nescence study. J. Phys. Chem. 92, 4676–4679. Charlot G., 1961. Les methodes de la chimie analytique (Analyse quantitative mine ’rale). Masson ed., Paris, France. Chestnoy N., T. D. Harris, R. Hull & L. E. Brus, 1986. Luminescence and Photophysics of CdS semiconductor clusters: The nature of the emitting electronic state. J. Phys. Chem. 90, 3393–3399. Deister U., & P. Warneck, 1990. Photooxidation of (SO32) in Aqueous Solution. J. Phys. Chem. 94, 2191–2198. Ermakov A. N., G. A. Poskrebyshev & A. P. Purmal, 1997. Sulfite oxidation. modern state of the problem. Kinetics and Catalysis 38, 325–338. Holzbecher Z., L. Divis., L. S. u. cha & F. Vlacil, 1975. Organická éinidla v anorganicke ánalýze. SNTL, Praha. Emelyanova G. I., L. E. Gorlenko, L. V. Voronova, M. P. Zverev & V. V. Lunin, 1999. Low-temperature hydrogen sulfide oxidation to sulfur over metal-containing vion fibers. Kinetics and Catalysis 40, 90–96. Fendler J. H. (ed.), 1998. Nano particles and Nano structured films: preparation, Characterization and Application. Weinheim, New York, USA. Giggenbach W., 1972. Optical Spectra and Equilibrium Distribution of Polysulfide Ions in Aqueous Solution at 20 C. Inorg. Chem. 11, 1201–1207. Gra ¨tzel M. (ed.), 1983. Energy Resources through Photochemistry and Catalysis. Academic Press, New York, USA. Hoyer P. & H. Weller, 1995. Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films. J. Phys. Chem. 99, 14096–14100. Khairutdinov R. F., 1998. Chemistry of semiconductor nano-particles. Uspechi chimii (russ. ed.) 67, 125–139. Kryukov A. I., S. Ya. Kuchmii & V. D. Pokhodenko, 2000. Energetics of electronic processes in semiconductor photocat-alytic systems. Theoret. Experim. Chem. (engl. ed.) 36, 69–87. Kovach S. K., V. S. Vorobets & A. T. Vas ‘ko, 1988. Determination of the second dissociation constant of hydrogen sulfide with the use of sulfide-selective electrode. Ukrain. chim. zhurnal. (russ. ed.) 54, 150–154. Kamat P. V. & N. M. Dimitrijevic, 1989. Dynamic Burstein. Moss Shift in Semi-conductor Colloids. J. Phys. Chem. 93, 2873–2875. Licht S., G. Hodes, & J. Manassen, 1986. Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide/polysulfide photo-electrochemical solar cells. Inorg. Chem. 25, 2485–2489. Liu C-Y., & Bard A. J., 1989. Effect of Excess charge on band energetics (optical absorbtion edge and carrier redox potential)in Small Semiconductor Particles. J. Phys. Chem. 93, 3232–3237. Meissner D., R. Memming & B. Kastening, 1988. Photoelect-rochemistry of cadmium sulfide. 1. Reanalysis of photocor-rosion and. at-band potential. J. Phys. Chem. 92, 3476–3483. Mills G., M. S. Schmidt, M. S. Matheson & D. Meisel, 1987. Thermal and photo-chemical reactions of sulfhydryl radicals. Implications for colloid photo-corrosion. J. Phys. Chem. 91, 1590–1596. Magomedov M. A., R. N. Gasanova, A. M. Kurbanova & Kh. A. Magomedov, 1999. Characteristic parameters of oxygen photoadsorbtion on epitaxial layers of cadmium chalcoge-nides (CdS, CdSe, n-CdTe) Zhurnal. z. chimii (russ. ed.) 73, 1122–1124. Nosaka Y. & M. A. Fox, 1986. Effect of light intensity on the quantum yield of photoinduced electron transfer from colloidal cadmium sulfide to methyl-viologen. J. Phys. Chem. 90, 6521–6522. Nosaka Y., N. Ohta & H. Miyama, 1990. Photochemical kinetics of ultrasmall semi-conductor particles in solution: Effect of size on the quantum yield of electron transfer J. Phys. Chem. 94, 3753–3755. Raevskaya A. E., A. L. Stroyuk & S. Ya. Kuchmii, 2003a. Optical properties of colloidal CdS nanoparticles stabilized with the sodium polyphosphate and their behaviour under pulse photoexcitation. Theoret. Experim. Chem. (engl. ed.) 39, 153–160. Raevskaya A. E., A. L. Stroyuk & S. Ya. Kuchmii, 2003b. Photocatalytic activity of CdS nanoparticles in sul. te ions chain oxidation by molecular oxygen. Theoret. Experim. Chem. (russ. ed.) 39, 230–235. Rao C. N. R. & A. K. Cheetham, 2001. Science and technology of nanomaterials:current and future prospects. J. Mater. Chem. 11, 2887–2894. Resch P., R. J. Field & F. W. Schneider, 1989. The Methylene Blue. HS. O2 oscillator:mechanistic proposal and periodic perturbation. J. Phys. Chem. 93, 2783–2791. Schubert R, 1991. Lehrbuch der O ¨kologie. Ganz Fischer Verlag, Leipzig, Germany. Shiragami T., S. Fukami, Y. Wada & S. Yanagida, 1993. Semiconductor Photo-catalysis:Effect of light intensity on nanoscale CdS-catalyzed photolysis of organic solvents. J. Phys. Chem. 97, 12882–12887. Tolkachev N. N., A. Yu. Stacheev, L. M. Kustov & L. A. Bondar, 2001. Spectral properties of CdS nanoparticles incapsulated in silica micropores. Zhurnal. z. chimii (russ. ed.)75, 1679–1683. Wang Y. & N. Herron, 1991. Nanometer-sized semiconductor clusters:Materials synthesis, quantum size Effects, and photophysical properties. J. Phys. Chem. 95, 525–532. Zakhalyavko, G. A., N. V. Gorokhovatskaya & V. V. Goncharuk, 1987. Utilization of carboxylic cationite for the purification of waters polluted by hydrogen sulfide. Chem. Technol. Water. (russ. ed.) 9, 459–460. Zakhalyavko G. A., S. S. Stavisskaya, I. A. Tarkovskaya, N. V. Gorokhovatskaya & V. V. Goncharuk 1989. Liquid-phase sulfide ions air oxidation in aqueous solutions over modified oxidized carbons. Chem. Technol. Water. (russ. ed.) 11, 982–984. Zhang Y-X. & R. J. Field, 1991. Simplification of a mechanism of the methylene blue. HS. O2 CSTR oscillator:A homogeneous oscillatory mechanism with nonlinearities but no autocatalysis. J. Phys. Chem. 95, 723–727. Zhang J. Z., 2000. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B. 104, 7239–7253. Zhang J. Z., R. H. O’Neil & T. W. Roberti, 1994. Femtosecond studies of photoinduced electron dynamics at the liquid-solid interface of aqueous CdS Colloids. J. Phys. Chem. 98, 3859–3864