Photoautotrophic picoplankton – a review on their occurrence, role and diversity in Lake Balaton

Biologia Futura - Tập 71 Số 4 - Trang 371-382 - 2020
Boglárka Somogyi1, Tamás Felföldi2, László Tóth1, Gábor Bernát1, Lajos Vörös1
1Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
2Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C., Budapest, 1117, Hungary

Tóm tắt

AbstractOccurrence of the smallest phototrophic microorganisms (photoautotrophic picoplankton, APP) in Lake Balaton was discovered in the early 1980s. This triggered a series of systematic studies on APP and resulted in the setting of a unique long-term picoplankton dataset. In this review, we intend to summarize the obtained results and to give a new insight on APP ecology and diversity in Lake Balaton. According to the results, APP dynamics depends on trophic state, temperature, nutrient, and light availability, as well as grazing pressure. APP abundance in Lake Balaton decreased to a low level (1–2 × 105 cells mL−1) as a consequence of decreasing nutrient supply (oligotrophication) during the past more than two decades, and followed a characteristic seasonal dynamics with higher abundance values from spring to autumn than in winter. Concomitantly, however, the APP contribution to both phytoplankton biomass and primary production increased (up to 70% and 40–50%, respectively) during oligotrophication. Regarding annual pattern, picocyanobacteria are dominant from spring to autumn, while in winter, picoeukaryotes are the most abundant, most likely due to the different light and temperature optima of these groups. Within picocyanobacteria, single cells and microcolonies were both observed with mid-summer dominance of the latter which correlated well with the density of cladocerans. Community-level chromatic adaptation (i.e., dominance of phycoerythrin- or phycocyanin-rich forms) of planktonic picocyanobacteria was also found as a function of underwater light quality. Sequence analysis studies of APP in Lake Balaton revealed that both picocyanobacteria and picoeukaryotes represent a diverse and dynamic community consisting several freshwater genotypes (picocyanobacteria: Synechococcus, Cyanobium; picoeukaryotes: Choricystis, Stichococcus, Mychonastes, Nannochloris, and Nannochloropsis).

Từ khóa


Tài liệu tham khảo

Agawin NSR, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:1891

Balogh KV, Koncz E, Vörös L (2000) An empirical model describing the contribution of colour, algae and particles to the light climate of shallow lakes. Verh Internat Verein Limnol 27:2678–2681

Becker S, Richl P, Ernst A (2007) Seasonal and habitat-related distribution pattern of Synechocccus genotypes in Lake Constance. FEMS Microbiol Ecol 62:64–77

Bell T, Kalff J (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol Oceanogr 46:1243–1248

Belykh OI, Semanova EA, Kuznedelov KD, Zaika EI, Guselnikova NE (2000) An eukaryotic alga from picoplankton of Lake Baikal: morphology, ultrastructure and rDNA sequence data. Hydrobiologia 435:83–90

Borsodi AK, Szabó A, Krett G, Felföldi T, Specziár A, Boros G (2017) Gut content microbiota of introduced bigheaded carps (Hypophthalmichthys spp.) inhabiting the largest shallow lake in Central Europe. Microbiol Res 195:40–50

Bullerjahn GS, McKay RML, Bernát G, Prásil O, Vörös L, Pálffy K, Tugyi N, Somogyi B (2019) Community dynamics and function of algae and bacteria during winter in central European great lakes. J Great Lakes Res. https://doi.org/10.1016/j.jglr.2019.07.002

Burns CW, Stockner JG (1991) Picoplankton in 6 New-Zealand Lakes—abundance in relation to season and trophic state. Int Rev Ges Hydrobiol 76:523–536

Calieri C, Amicucci E, Bertoni R, Vörös L (1996) Fluorometric characterization of two picocyanobacteria strains from lakes of different underwater light quality. Int Rev Ges Hydrobiol 81:13–23

Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev 1:1–28

Callieri C (2017) Synechococcus plasticity under environmental changes. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx229

Callieri C, Stockner J (2002) Picocyanobacteria success in oligotrophic lakes: fact or fiction? J Limnol 59:72–76

Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E, Bertoni R (2013) Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol 85:293–301

Callieri C, Amalfitano S, Corno G, Bertoni R (2016) Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw154

Camacho A, Miracle MR, Vicente E (2003) Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Arch Hydrobiol 157:321–338

Chen F, Wang K, Kan J, Suzuki M, Wommack KE (2006) Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S–23S rRNA Internal Transcribed Spacer sequences. Appl Environ Microbiol 72:2239–2243

Chen Y, Li X-Y, Sun Z, Zhou Z-G (2017) Isolation and identification of Choricystis minor Fott and mass cultivation for oil production. Algal Res 25:142–148

Crosbie ND, Teubner K, Weisse T (2003) Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat Microb Ecol 33:53–66

Dokulil MT, Herzig A, Somogyi B, Vörös L, Donabaum K, May L, Nöges T (2014) Winter conditions in six European shallow lakes: a comparative synopsis. Est J Ecol 63:111–129

Fawley MW, Fawley KP, Buchheim MA (2004) Molecular diversity among communities of freshwater microchlorophytes. Microb Ecol 48:489–499

Felföldi T, Duleba M, Somogyi B, Vajna B, Nikolausz M, Présing M, Márialigeti K, Vörös L (2011a) Diversity and seasonal dynamics of the photoautotrophic picoplankton in Lake Balaton (Hungary). Aquat Microb Ecol 63:273–287

Felföldi T, Somogyi B, Márialigeti K, Vörös L (2011b) Notes on the biogeography of non-marine planktonic picocyanobacteria: re-evaluating novelty. J Plankton Res 33:1622–1626

Flombaum P, Wang W-L, Primeau FW, Martiny AC (2020) Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat Geosci 13:116–120

Frenette JJ, Massicotte P, Lapierre JF (2012) Colourful niches of phytoplankton shaped by the spatial connectivity in a large river ecosystem: a riverscape perspective. PLoS ONE 7:e35891

Fuller NJ, Campbell C, Allen DJ, Pitt FD, Le Gall F, Vaulot D, Scanlan DJ (2006) Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquat Microb Ecol 43:79–93

Hanagata N, Malinsky-Rushansky N, Dubinsky Z (1999) Eukaryotic picoplankton, Mychonastes homosphaera (Chlorophyceae, Chlorophyta) in Lake Kinneret, Israel. Phycol Res 47:263–269

Haverkamp THA, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ (2009) Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J 3:397–408

Hepperle D, Krienitz L (2001) Systematics and ecology of chlorophyte picoplankton in German inland waters along a nutrient gradient. Int Rev Hydrobiol 86:269–284

Hepperle D, Schlegel I (2002) Molecular diversity of eukaryotic picoalgae from three lakes in Switzerland. Int Rev Ges Hydrobiol 87:1–10

Herodek S (1979) Eutrofizálódás, a Balatont fenyegető közvetlen veszély. MTA Biol Oszt Közl 22:323–336

Herodek S (1988) Limnology of Lake Balaton. In: Misley K (ed) Lake Balaton research and management. Nexus, Budapest, pp 9–28

Huang S, Liu Y, Hu A, Liu X, Chen F, Yao T, Jiao N (2014) Genetic diversity of picocyanobacteria in Tibetan lakes: assessing the endemic and universal distributions. Appl Environ Microbiol 80:7640–7650

Ivanikova NV, Popels LC, McKay ML, Bullerjahn GS (2007) Lake Superior supports novel clusters of cyanobacterial picoplankton. Appl Environ Microbiol 73:4055–4065

Jezberová J, Komárková J (2007) Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ Microbiol 9:1858–1862

Johnson PW, Sieburth J McN (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928–935

Kalwasińska A, Felföldi T, Szabó A, Deja-Sikora E, Kosobucki P, Walczak M (2017) Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland. Antonie van Leeuwenhoek 110:945–962

Karlov DS, Marie D, Sumbatyan DA, Chuvochina MS, Kulichevskaya IS, Alekhina IA, Bulat SA (2017) Microbial communities within the water column of freshwater Lake Radok, East Antarctica: predominant 16S rDNA phylotypes and bacterial cultures. Polar Biol 40:823–836

Katano T, Nakano S, Mitamura O, Yoshida H, Azumi H, Matsuura Y, Tanaka Y, Maezono H, Satoh Y, Satoh T, Suigiyama Y, Watanabe Y, Mimura T, Akagashi Y, Machida H, Drucker VV, Tikhonova I, Belykh O, Fialkov VA, Han MS, Kang SH, Sugiyama M (2008) abundance and pigment type composition of picocyanobacteria in Barguzin Bay, Lake Baikal. Limnology 9:105–114

Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. University Press, Cambridge, p 401

Komárková J (2002) Cyanobacterial picoplankton and its colonial formations in two eutrophic canyon reservoirs (Czech Republic). Arch Hydrobiol 154:605–623

Komárková J, Šimek K (2003) Unicellular and colonial formations of picoplanktic cyanobacteria under different environmental conditions and predation pressure. Arch Hydrobiol Suppl Algol Stud 109:327–340

Krienitz L, Bock C (2012) Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698:295–326

Krienitz L, Takeda H, Hepperle D (1999) Ultrastructure, cell wall composition, and phylogenetic position of Pseudodictyosphaerium jurisii (Chlorococcales, Chlorophyta) including a comparison with other picoplanktonic green algae. Phycologia 38:100–107

Krienitz L, Hepperle D, Stich H-B, Weiler W (2000) Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39:219–227

Kürthy A, Somogyi B, Németh B, Vörös L (2012) A víz alatti fény spektrális összetételének hatása sekély tavak pikoplanktonjára. Hidrológiai Közlöny 92:49–52

Malinsky-Rushansky N, Berman T, Dubinsky Z (1995) Seasonal dynamics of picophytoplankton in Lake Kinneret, Israel. Freshw Biol 34:241–254

Metfies K, Appen WJ, Kilias E, Nicolaus A, Nöthig EM (2016) Biogeography and photosynthetic biomass of Arctic marine pico-eukaryotes during summer of the record sea ice minimum 2012. PLoS ONE 11:e0148512. https://doi.org/10.1371/journal.pone.0148512

Mózes, A. (2008) Pikoplankton a trofikus grádiens mentén. Doktori (PhD) értekezés, ELTE, Biológia Doktori Iskola, Kísérletes Növénybiológia Doktori Program

Mózes A, Vörös L (2004) Különleges pikoplankton együttesek a befagyott Balatonban. Hidrológiai Közlöny 84:180–182

Mózes A, Présing M, Vörös L (2006) Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Int Rev Ges Hydrobiol 91:38–50

Mühling M, Fuller NJ, Millard A, Somerfield PJ et al (2005) Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control. Environ Microbiol 7:499–508

Padisák J, Szabó I (1997) Botanikai kutatások a Balatonon: alacsony-és magasabbrendű növények. In: Salánki J, Nemcsók J (eds) A Balatonkutatás eredményei 1981–1996. MTA Veszprémi Területi Bizottsága és a Miniszterelnöki Hivatal Balatoni Titkársága, Veszprém, pp 97–135

Pálffy K, Felföldi T, Mentes A, Horváth H, Márialigeti K, Boros E, Vörös L, Somogyi B (2014) Unique picoeukaryotic algal community under multiple environmental stress conditions in a shallow, alkaline pan. Extremophiles 18:111–119

Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

Pernthaler J, Amann R (2005) Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol Mol Biol R 69:440–461

Pick FR, Agbeti M (1991) The seasonal dynamics and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int Rev Ges Hydrobiol 76:565–580

Platt T, Subba Rao DV, Irwin B (1983) Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301:702–704

Postius C, Böger P (1998) Different interactions of phycoerythrin- and phycocyanin-rich Synechococcus spp. with diazottrophic bacteria from the picoplankton of Lake Constance. Arch Hydrobiol 141:181–194

Présing M, Herodek S, Preston T, Vörös L (2001) Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton. Freshw Biol 46:125–139

Raven JA, Finkel ZV, Irwin AJ (2005) Picophytoplankton: bottom-up and top-down controls on ecology and evolution. Vie Milieu 55:209–215

Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ (2016) Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the South East Pacific Ocean. Limnol Oceanogr 61:806–824

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

Selvarajan R, Felföldi T, Sanniyasi E, Tekere M (2016) Assessing the potential of some freshwater and saline microalgae as biodiesel feedstock. J Biobased Mater Bioenergy 10:50–62

Shi X, Li S, Fan F, Zhang M, Yang Z, Yang Y (2019) Mychonastes dominates the photosynthetic picoeukaryotes in Lake Poyang, a river-connected lake. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy211

Somogyi B, Vörös L (2006) A pikoplankton fotoszintézisének karakterisztikái sekély tavakban. Hidrológiai Közlöny 86:110–112

Somogyi B, Felföldi T, Vanyovszki J, Ágyi Á, Márialigeti K, Vörös L (2009) Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat Ecol 43:735–744

Somogyi B, Felföldi T, Márialigeti K, Vörös L (2012) Sekély tavaink téli eukarióta pikoalgái. Hidrológiai Közlöny 92:61–63

Somogyi B, Felföldi T, Balogh KV, Boros E, Pálffy K, Vörös L (2016) The role and composition of winter picoeukaryotic assemblages in shallow Central European great lakes. J Great Lakes Res 42:1420–1431

Somogyi B, Pálffy K, Balogh KV, Botta-Dukát Z, Vörös L (2017) Unusual behaviour of phototrophic picoplankton in turbid waters. PLoS ONE 12:3

Stockner JG (1991) Autotrophic picoplankton in freshwater ecosystems: the view from summit. Int Rev Ges Hydrobiol 76:483–492

Stockner JG, Antia NJ (1986) Algal picoplankton frommarine and freshwater: a multidisciplinary perspective. Can J Fish Aquat Sci 43:2472–2503

Stockner JG, Shortreed KS (1991) Autotrophic Picoplankton—community composition, abundance and distribution across a gradient of oligotrophic British-Columbia and Yukon-Territory Lakes. Int Rev Ges Hydrobiol 76:581–601

Stockner JG, Callieri C, Cronberg G (2000) Picoplankton and other non-bloom forming cyanobacteria in lakes. In: Whitton B, Potts AM (eds) The ecology of cyanobacteria. Kluwer, New York, pp 195–231

Stomp M, Huisman J, Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104–106

Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298

Suda S, Atsumi M, Miyashita H (2002) Taxonomic characterization of a marine Nannochloropsis species, N. oceanica sp. nov. (Eustigmatophyceae). Phycologia 41:273–279

Szelag-Wasielewska E (1997) Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia 342(343):79–85

Urbach E, Scanlan DJ, Distel L, Waterbury JB, Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46:188–201

Vasileva A, Skopina M, Averina S, Gavrilova O, Ivanikova N, Pinevich A (2017) Metagenomic analysis in Lake Onego (Russia) Synechococcus cyanobacteria. J Great Lakes Res 43:43–54

Vörös L (1987–1988) Bakteriális méretű fotoautotrófikus szervezetek néhány sekély tóban. Botanikai Közlemények 74–75:141–151

Vörös L (1991) Importance of picoplankton in Hungarian shallow lakes. Verh Internat Verein Limnol 24:984–988

Vörös L, Nagy Göde P (1993) Long term changes of phytoplankton in Lake Balaton (Hungary). Verhandlungen des Internationalen Verein Limnologie 25:682–686

Vörös L, Gulyás P, Németh J (1991) Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int Rev Ges Hydrobiol 76:617–629

Vörös L, Callieri C, Balogh KV, Bertoni R (1998) Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369(370):117–125

Vörös L, Mózes A, Somogyi B (2009) A five-year study of autotrophic winter picoplankton in Lake Balaton, Hungary. Aquat Ecol 43:727–734

Waterbury JB, Watson SW, Guillard RR, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277:293–294

Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214:71–120

Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv Microbial Ecol 13:327–370

Wetzel RG, Likens GE (2001) Limnological analyses, 3rd edn. Springer, New York

Wu L, Xu L, Hu C (2015) Screening and characterization of oleaginous microalgal species from Northern Xinjiang. J Microbiol Biotechnol 25:910–917