Photoacoustic spectroscopy for gas sensing: A comparison between piezoelectric and interferometric readout in custom quartz tuning forks

Photoacoustics - Tập 17 - Trang 100155 - 2020
Stefano Dello Russo1,2, Sheng Zhou3, Andrea Zifarelli1,2, Pietro Patimisco1,2, Angelo Sampaolo1,2, Marilena Giglio1,2, Davide Iannuzzi3, Vincenzo Spagnolo1,2
1PolySense Lab-Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari, Italy
2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
3Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands

Tài liệu tham khảo

Hodgkinson, 2013, Optical gas sensing: a review, Meas. Sci. Technol., 24, 10.1088/0957-0233/24/1/012004 Elia, 2009, Photoacoustic techniques for trace gas sensing based on semiconductor laser, Sensors, 9, 9616, 10.3390/s91209616 Kosterev, 2002, Quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 27, 1902, 10.1364/OL.27.001902 Kosterev, 2005, Applications of quartz tuning forks in spectroscopic gas sensing, Rev. Sci. Instrum., 76, 10.1063/1.1884196 Patimisco, 2014, Quartz-enhanced photoacoustic spectroscopy: a review, Sensors, 14, 6165, 10.3390/s140406165 Patimisco, 2016, Quartz-enhanced photoacoustic spectrophones exploiting custom tuning forks: a review, Adv. Phys. X, 2, 169 Patimisco, 2018, Recent advances in quartz enhanced photoacoustic sensing, App. Phys. Rev., 5 Dong, 2010, QEPAS spectrophones: design, optimization, and performance, Appl. Phys. B, 100, 627, 10.1007/s00340-010-4072-0 Sampaolo, 2015, Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes, Appl. Phys. Lett., 107, 10.1063/1.4937002 Zheng, 2016, Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone, Appl. Phys. Lett., 109, 10.1063/1.4962810 Patimisco, 2016, Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing, Sens. Actuator B-Chem., 227, 539, 10.1016/j.snb.2015.12.096 Dello Russo, 2019, Acoustic coupling between resonator tubes in quartz-enhanced photoacoustic spectrophones employing a large prong spacing tuning fork, Sensors, 19, 4109, 10.3390/s19194109 Patimisco, 2018, Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes, IEEE Trans. Ultrason. Ferroelectr., 65, 951, 10.1109/TUFFC.2018.2853404 Patimisco, 2019, Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy, Opt. Express, 27, 1401, 10.1364/OE.27.001401 Pisani, 2012, Comparison of the performance of the next generation of optical interferometers, Metrologia, 49, 455, 10.1088/0026-1394/49/4/455 Shao, 2016, Pulsed laser interferometry with sub-picometer resolution using quadrature detection, Opt. Exp., 24, 17459, 10.1364/OE.24.017459 Köhring, 2011, Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis, Appl. Phys. B, 102, 133, 10.1007/s00340-010-4222-4 Köhring, 2012, Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy, IEEE J. Sel. Top. Quant., 18, 1566, 10.1109/JSTQE.2012.2182761 Köhring, 2013, Temperature effects in tuning fork enhanced interferometric photoacoustic spectroscopy, Opt. Exp., 18, 20911, 10.1364/OE.21.020911 Patimisco, 2014, Quartz enhanced photo-acoustic gas sensor based on custom tuning fork and terahertz quantum cascade laser, Analyst, 139, 2079, 10.1039/C3AN01219K Tittel, 2016, Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy, Opt. Express, 24, A682, 10.1364/OE.24.00A682 Klein, 1980, Stress induced birefringence, critical window orientation, and thermal lensing experiments, 117 Richling, 2017