Photoacoustic 3-D imaging of polycrystalline microstructure improved with transverse acoustic waves

Photoacoustics - Tập 23 - Trang 100286 - 2021
Théo Thréard1, Elton de Lima Savi1, Sergey Avanesyan2, Nikolay Chigarev1, Zilong Hua3, Vincent Tournat1, Vitalyi E. Gusev4, David H. Hurley3, Samuel Raetz1
1Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, France
2Departement of Life and Physical Sciences, Fisk University, Nashville, USA
3Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA
4Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, France

Tài liệu tham khảo

Bell, 1880, On the production and reproduction of sound by light, Am. J. Sci., s3-20, 305, 10.2475/ajs.s3-20.118.305 Rosencwaig, 1973, Photoacoustic spectroscopy of biological materials, Science, 181, 657, 10.1126/science.181.4100.657 Rosencwaig, 2008, Photoacoustics and photoacoustic spectroscopy, Phys. Today, 34, 64, 10.1063/1.2914619 Gusev, 1993, 13 McDonald, 2011, Photoacoustic, photothermal, and related techniques: a review, Can. J. Phys. Scruby, 1990 Lepoutre, 1983, Coupled equations of modulated photothermal effects, hypotheses and solutions, J. Phys. Coll., 44 Cretin, 1998, Super-résolution en microscopie photothermique et thermoélastique: extension du concept de champ proche, Rev. Gén. Therm., 37, 556, 10.1016/S0035-3159(98)80034-2 Fournier, 2000, Micron scale photothermal imaging, based on a paper presented as a plenary talk at Eurotherm Seminar No 57 “Microscale Heat Transfer”, Poitiers, France, July 8–10, 1998.1, Int. J. Thermal Sci., 39, 514, 10.1016/S1290-0729(00)00230-1 Atkin, 2012, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv. Phys., 61, 745, 10.1080/00018732.2012.737982 Hurley, 2019, Pump-probe laser ultrasonics: characterization of material microstructure, IEEE Nanotechnol. Mag., 13, 29, 10.1109/MNANO.2019.2904772 Manohar, 2007, Concomitant speed-of-sound tomography in photoacoustic imaging, Appl. Phys. Lett., 91, 131911, 10.1063/1.2789689 Rousseau, 2012, Non-contact photoacoustic tomography and ultrasonography for tissue imaging, Biomed. Opt. Express, 3, 16, 10.1364/BOE.3.000016 Fehm, 2014, Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe, Appl. Phys. Lett., 105, 173505, 10.1063/1.4900520 Wurzinger, 2016, Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection, J. Biomed. Opt., 21, 086010, 10.1117/1.JBO.21.8.086010 Thomsen, 1984, Coherent phonon generation and detection by picosecond light pulses, Phys. Rev. Lett., 53, 989, 10.1103/PhysRevLett.53.989 Grahn, 1989, Picosecond ultrasonics, IEEE J. Quant. Electron., 25, 2562, 10.1109/3.40643 Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005 Carome, 1964, Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients, Appl. Phys. Lett., 4, 95, 10.1063/1.1753985 Cross, 1987, Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths, Appl. Phys. Lett., 50, 1019, 10.1063/1.97994 Oraevsky, 1996, Laser optic-acoustic tomography for medical diagnostics: principles, vol. 2676, 22 Karabutov, 1996, Time-resolved laser optoacoustic tomography of inhomogeneous media, Appl. Phys. B, 63, 545, 10.1007/BF01830994 Oraevsky, 1999, Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm, vol. 3601, 256 Ntziachristos, 2005, Looking and listening to light: the evolution of whole-body photonic imaging, Nat. Biotechnol., 23, 313, 10.1038/nbt1074 Beard, 2011, Biomedical photoacoustic imaging, Interface Focus, 1, 602, 10.1098/rsfs.2011.0028 Lutzweiler, 2013, Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification, Sensors (Basel, Switzerland), 13, 7345, 10.3390/s130607345 Wang, 2014, Photoacoustic microscopy and computed tomography: from bench to bedside, Annu. Rev. Biomed. Eng., 16, 155, 10.1146/annurev-bioeng-071813-104553 Taruttis, 2015, Advances in real-time multispectral optoacoustic imaging and its applications, Nat. Photon., 9, 219, 10.1038/nphoton.2015.29 Wang, 2016, A practical guide to photoacoustic tomography in the life sciences, Nat. Methods, 13, 627, 10.1038/nmeth.3925 Wissmeyer, 2018, Looking at sound: optoacoustics with all-optical ultrasound detection, Light: Sci. Appl., 7, 53, 10.1038/s41377-018-0036-7 Steinberg, 2019, Photoacoustic clinical imaging, Photoacoustics, 14, 77, 10.1016/j.pacs.2019.05.001 Wang, 2012, Photoacoustic tomography: in vivo imaging from organelles to organs, Science, 335, 1458, 10.1126/science.1216210 Ku, 2005, Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent, Opt. Lett., 30, 507, 10.1364/OL.30.000507 Thomsen, 1986, Picosecond interferometric technique for study of phonons in the Brillouin frequency range, Opt. Commun., 60, 55, 10.1016/0030-4018(86)90116-1 Lin, 1991, Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry, J. Appl. Phys., 69, 3816, 10.1063/1.348958 Gusev, 2018, Advances in applications of time-domain Brillouin scattering for nanoscale imaging, Appl. Phys. Rev., 5, 031101, 10.1063/1.5017241 Rossignol, 2005, Generation and detection of shear acoustic waves in metal submicrometric films with ultrashort laser pulses, Phys. Rev. Lett., 94, 166106, 10.1103/PhysRevLett.94.166106 Dehoux, 2016, Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object, Light: Sci. Appl., 5, e16082, 10.1038/lsa.2016.82 Nikitin, 2014, Directivity patterns and pulse profiles of ultrasound emitted by laser action on interface between transparent and opaque solids: analytical theory, J. Appl. Phys., 115, 044902, 10.1063/1.4861882 Wright, 1992, Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics, J. Appl. Phys., 71, 1617, 10.1063/1.351218 O’Hara, 2001, Characterization of nanostructured metal films by picosecond acoustics and interferometry, J. Appl. Phys., 90, 4852, 10.1063/1.1406543 Devos, 2004, Strong oscillations detected by picosecond ultrasonics in silicon: evidence for an electronic-structure effect, Phys. Rev. B, 70, 125208, 10.1103/PhysRevB.70.125208 Devos, 2005, A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects, Appl. Phys. Lett., 86, 211903, 10.1063/1.1929869 Hudert, 2008, Influence of doping profiles on coherent acoustic phonon detection and generation in semiconductors, J. Appl. Phys., 104, 123509, 10.1063/1.3033140 Mechri, 2009, Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry, Appl. Phys. Lett., 95, 091907, 10.1063/1.3220063 Lomonosov, 2012, Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film, ACS Nano, 6, 1410, 10.1021/nn204210u Steigerwald, 2009, Semiconductor point defect concentration profiles measured using coherent acoustic phonon waves, Appl. Phys. Lett., 94, 111910, 10.1063/1.3099341 Yarotski, 2012, Characterization of irradiation damage distribution near TiO2/SrTiO3 interfaces using coherent acoustic phonon interferometry, Appl. Phys. Lett., 100, 251603, 10.1063/1.4729621 Gregory, 2013, Erratum: “Ion implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic phonon spectroscopy” [Appl Phys Lett 101, 181904 (2012)], Appl. Phys. Lett., 103, 049904, 10.1063/1.4816967 Nikitin, 2015, Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering, Sci. Rep., 5, 1, 10.1038/srep09352 Kuriakose, 2016, Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures, Ultrasonics, 69, 259, 10.1016/j.ultras.2016.03.007 Sathyan, 2021, 3D characterization of individual grains of coexisting high-pressure H2O ice phases by time-domain Brillouin scattering, J. Appl. Phys., 130 Rossignol, 2008, In Vitro picosecond ultrasonics in a single cell, Appl. Phys. Lett., 93, 123901, 10.1063/1.2988470 Danworaphong, 2015, Three-dimensional imaging of biological cells with picosecond ultrasonics, Appl. Phys. Lett., 106, 163701, 10.1063/1.4918275 Pérez-Cota, 2016, High resolution 3D imaging of living cells with sub-optical wavelength phonons, Sci. Rep., 6, 39326, 10.1038/srep39326 Chaban, 2017, Time-domain Brillouin scattering for the determination of laser-induced temperature gradients in liquids, Rev. Sci. Instrum., 88, 074904, 10.1063/1.4993132 Khafizov, 2016, Subsurface imaging of grain microstructure using picosecond ultrasonics, Acta Mater., 112, 209, 10.1016/j.actamat.2016.04.003 Wang, 2019, Nondestructive characterization of polycrystalline 3D microstructure with time-domain Brillouin scattering, Scr. Mater., 166, 34, 10.1016/j.scriptamat.2019.02.037 Wang, 2020, Imaging grain microstructure in a model ceramic energy material with optically generated coherent acoustic phonons, Nat. Commun., 11, 1597, 10.1038/s41467-020-15360-3 Hurley, 2006, Time-resolved surface acoustic wave propagation across a single grain boundary, Phys. Rev. B, 73, 125403, 10.1103/PhysRevB.73.125403 Chiu, 2010, Optical and electrical characterizations of cerium oxide thin films, J. Phys. D: Appl. Phys., 43, 075104, 10.1088/0022-3727/43/7/075104 NETA, homepage, 2016. https://www.neta_tech.com/en/ (accessed 08.08.2021). Bartels, 2006, Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line, Appl. Phys. Lett., 88, 041117, 10.1063/1.2167812 Abbas, 2014, Picosecond time resolved opto-acoustic imaging with 48 MHz frequency resolution, Opt. Express, 22, 7831, 10.1364/OE.22.007831 Gusev, 2011, Depth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: theory, J. Appl. Phys., 110, 124908, 10.1063/1.3665646 Fabelinskii, 1968 Dil, 1982, Brillouin scattering in condensed matter, Rep. Prog. Phys., 45, 285, 10.1088/0034-4885/45/3/002 Wang, 2021, Shear wave generation by mode conversion in picosecond ultrasonics: impact of grain orientation and material properties, J. Am. Ceram. Soc. Daubechies, 2011, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool, Appl. Comput. Harmonic Anal., 30, 243, 10.1016/j.acha.2010.08.002 Auger, 2013, Time-frequency reassignment and synchrosqueezing: an overview, IEEE Signal Process. Mag., 30, 32, 10.1109/MSP.2013.2265316 Meignen, 2017, On demodulation, ridge detection and synchrosqueezing for multicomponent signals, IEEE Trans. Signal Process., 65, 2093, 10.1109/TSP.2017.2656838 Meignen, 2019, Synchrosqueezing transforms: from low- to high-frequency modulations and perspectives, Compt. Rend. Phys., 20, 449, 10.1016/j.crhy.2019.07.001 Thakur, 2013, The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications, Signal Process., 93, 1079, 10.1016/j.sigpro.2012.11.029 Bause, 2013, Ultrasonic waveguide signal decomposition using the synchrosqueezed wavelet transform for modal group delay computation, 2013 IEEE International Ultrasonics Symposium (IUS), 671, 10.1109/ULTSYM.2013.0173 Hazra, 2017, Fault detection of gearboxes using synchro-squeezing transform, J. Vibr. Control, 23, 3108, 10.1177/1077546315627242 Otsu, 1979, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9, 62, 10.1109/TSMC.1979.4310076 Edelsbrunner, 1983, On the shape of a set of points in the plane, IEEE Trans. Inform. Theory, 29, 551, 10.1109/TIT.1983.1056714 Edelsbrunner, 1994, Three-dimensional alpha shapes, ACM Trans. Graph., 13, 43, 10.1145/174462.156635 Chung, 1979, The determination of the orientation of cubic crystals from measured sound velocities, Phys. Stat. Solidi (a), 52, 29, 10.1002/pssa.2210520103 Duda, 2002, Application of ultrasonic measurements to determine the orientation of crystalline samples, Physica B: Condens. Matter, 316–317, 118, 10.1016/S0921-4526(02)00436-2 Gusev, 2021