Photoacoustic 3-D imaging of polycrystalline microstructure improved with transverse acoustic waves
Tài liệu tham khảo
Bell, 1880, On the production and reproduction of sound by light, Am. J. Sci., s3-20, 305, 10.2475/ajs.s3-20.118.305
Rosencwaig, 1973, Photoacoustic spectroscopy of biological materials, Science, 181, 657, 10.1126/science.181.4100.657
Rosencwaig, 2008, Photoacoustics and photoacoustic spectroscopy, Phys. Today, 34, 64, 10.1063/1.2914619
Gusev, 1993, 13
McDonald, 2011, Photoacoustic, photothermal, and related techniques: a review, Can. J. Phys.
Scruby, 1990
Lepoutre, 1983, Coupled equations of modulated photothermal effects, hypotheses and solutions, J. Phys. Coll., 44
Cretin, 1998, Super-résolution en microscopie photothermique et thermoélastique: extension du concept de champ proche, Rev. Gén. Therm., 37, 556, 10.1016/S0035-3159(98)80034-2
Fournier, 2000, Micron scale photothermal imaging, based on a paper presented as a plenary talk at Eurotherm Seminar No 57 “Microscale Heat Transfer”, Poitiers, France, July 8–10, 1998.1, Int. J. Thermal Sci., 39, 514, 10.1016/S1290-0729(00)00230-1
Atkin, 2012, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv. Phys., 61, 745, 10.1080/00018732.2012.737982
Hurley, 2019, Pump-probe laser ultrasonics: characterization of material microstructure, IEEE Nanotechnol. Mag., 13, 29, 10.1109/MNANO.2019.2904772
Manohar, 2007, Concomitant speed-of-sound tomography in photoacoustic imaging, Appl. Phys. Lett., 91, 131911, 10.1063/1.2789689
Rousseau, 2012, Non-contact photoacoustic tomography and ultrasonography for tissue imaging, Biomed. Opt. Express, 3, 16, 10.1364/BOE.3.000016
Fehm, 2014, Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe, Appl. Phys. Lett., 105, 173505, 10.1063/1.4900520
Wurzinger, 2016, Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection, J. Biomed. Opt., 21, 086010, 10.1117/1.JBO.21.8.086010
Thomsen, 1984, Coherent phonon generation and detection by picosecond light pulses, Phys. Rev. Lett., 53, 989, 10.1103/PhysRevLett.53.989
Grahn, 1989, Picosecond ultrasonics, IEEE J. Quant. Electron., 25, 2562, 10.1109/3.40643
Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005
Carome, 1964, Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients, Appl. Phys. Lett., 4, 95, 10.1063/1.1753985
Cross, 1987, Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths, Appl. Phys. Lett., 50, 1019, 10.1063/1.97994
Oraevsky, 1996, Laser optic-acoustic tomography for medical diagnostics: principles, vol. 2676, 22
Karabutov, 1996, Time-resolved laser optoacoustic tomography of inhomogeneous media, Appl. Phys. B, 63, 545, 10.1007/BF01830994
Oraevsky, 1999, Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm, vol. 3601, 256
Ntziachristos, 2005, Looking and listening to light: the evolution of whole-body photonic imaging, Nat. Biotechnol., 23, 313, 10.1038/nbt1074
Beard, 2011, Biomedical photoacoustic imaging, Interface Focus, 1, 602, 10.1098/rsfs.2011.0028
Lutzweiler, 2013, Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification, Sensors (Basel, Switzerland), 13, 7345, 10.3390/s130607345
Wang, 2014, Photoacoustic microscopy and computed tomography: from bench to bedside, Annu. Rev. Biomed. Eng., 16, 155, 10.1146/annurev-bioeng-071813-104553
Taruttis, 2015, Advances in real-time multispectral optoacoustic imaging and its applications, Nat. Photon., 9, 219, 10.1038/nphoton.2015.29
Wang, 2016, A practical guide to photoacoustic tomography in the life sciences, Nat. Methods, 13, 627, 10.1038/nmeth.3925
Wissmeyer, 2018, Looking at sound: optoacoustics with all-optical ultrasound detection, Light: Sci. Appl., 7, 53, 10.1038/s41377-018-0036-7
Steinberg, 2019, Photoacoustic clinical imaging, Photoacoustics, 14, 77, 10.1016/j.pacs.2019.05.001
Wang, 2012, Photoacoustic tomography: in vivo imaging from organelles to organs, Science, 335, 1458, 10.1126/science.1216210
Ku, 2005, Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent, Opt. Lett., 30, 507, 10.1364/OL.30.000507
Thomsen, 1986, Picosecond interferometric technique for study of phonons in the Brillouin frequency range, Opt. Commun., 60, 55, 10.1016/0030-4018(86)90116-1
Lin, 1991, Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry, J. Appl. Phys., 69, 3816, 10.1063/1.348958
Gusev, 2018, Advances in applications of time-domain Brillouin scattering for nanoscale imaging, Appl. Phys. Rev., 5, 031101, 10.1063/1.5017241
Rossignol, 2005, Generation and detection of shear acoustic waves in metal submicrometric films with ultrashort laser pulses, Phys. Rev. Lett., 94, 166106, 10.1103/PhysRevLett.94.166106
Dehoux, 2016, Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object, Light: Sci. Appl., 5, e16082, 10.1038/lsa.2016.82
Nikitin, 2014, Directivity patterns and pulse profiles of ultrasound emitted by laser action on interface between transparent and opaque solids: analytical theory, J. Appl. Phys., 115, 044902, 10.1063/1.4861882
Wright, 1992, Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics, J. Appl. Phys., 71, 1617, 10.1063/1.351218
O’Hara, 2001, Characterization of nanostructured metal films by picosecond acoustics and interferometry, J. Appl. Phys., 90, 4852, 10.1063/1.1406543
Devos, 2004, Strong oscillations detected by picosecond ultrasonics in silicon: evidence for an electronic-structure effect, Phys. Rev. B, 70, 125208, 10.1103/PhysRevB.70.125208
Devos, 2005, A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects, Appl. Phys. Lett., 86, 211903, 10.1063/1.1929869
Hudert, 2008, Influence of doping profiles on coherent acoustic phonon detection and generation in semiconductors, J. Appl. Phys., 104, 123509, 10.1063/1.3033140
Mechri, 2009, Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry, Appl. Phys. Lett., 95, 091907, 10.1063/1.3220063
Lomonosov, 2012, Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film, ACS Nano, 6, 1410, 10.1021/nn204210u
Steigerwald, 2009, Semiconductor point defect concentration profiles measured using coherent acoustic phonon waves, Appl. Phys. Lett., 94, 111910, 10.1063/1.3099341
Yarotski, 2012, Characterization of irradiation damage distribution near TiO2/SrTiO3 interfaces using coherent acoustic phonon interferometry, Appl. Phys. Lett., 100, 251603, 10.1063/1.4729621
Gregory, 2013, Erratum: “Ion implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic phonon spectroscopy” [Appl Phys Lett 101, 181904 (2012)], Appl. Phys. Lett., 103, 049904, 10.1063/1.4816967
Nikitin, 2015, Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering, Sci. Rep., 5, 1, 10.1038/srep09352
Kuriakose, 2016, Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures, Ultrasonics, 69, 259, 10.1016/j.ultras.2016.03.007
Sathyan, 2021, 3D characterization of individual grains of coexisting high-pressure H2O ice phases by time-domain Brillouin scattering, J. Appl. Phys., 130
Rossignol, 2008, In Vitro picosecond ultrasonics in a single cell, Appl. Phys. Lett., 93, 123901, 10.1063/1.2988470
Danworaphong, 2015, Three-dimensional imaging of biological cells with picosecond ultrasonics, Appl. Phys. Lett., 106, 163701, 10.1063/1.4918275
Pérez-Cota, 2016, High resolution 3D imaging of living cells with sub-optical wavelength phonons, Sci. Rep., 6, 39326, 10.1038/srep39326
Chaban, 2017, Time-domain Brillouin scattering for the determination of laser-induced temperature gradients in liquids, Rev. Sci. Instrum., 88, 074904, 10.1063/1.4993132
Khafizov, 2016, Subsurface imaging of grain microstructure using picosecond ultrasonics, Acta Mater., 112, 209, 10.1016/j.actamat.2016.04.003
Wang, 2019, Nondestructive characterization of polycrystalline 3D microstructure with time-domain Brillouin scattering, Scr. Mater., 166, 34, 10.1016/j.scriptamat.2019.02.037
Wang, 2020, Imaging grain microstructure in a model ceramic energy material with optically generated coherent acoustic phonons, Nat. Commun., 11, 1597, 10.1038/s41467-020-15360-3
Hurley, 2006, Time-resolved surface acoustic wave propagation across a single grain boundary, Phys. Rev. B, 73, 125403, 10.1103/PhysRevB.73.125403
Chiu, 2010, Optical and electrical characterizations of cerium oxide thin films, J. Phys. D: Appl. Phys., 43, 075104, 10.1088/0022-3727/43/7/075104
NETA, homepage, 2016. https://www.neta_tech.com/en/ (accessed 08.08.2021).
Bartels, 2006, Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line, Appl. Phys. Lett., 88, 041117, 10.1063/1.2167812
Abbas, 2014, Picosecond time resolved opto-acoustic imaging with 48 MHz frequency resolution, Opt. Express, 22, 7831, 10.1364/OE.22.007831
Gusev, 2011, Depth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: theory, J. Appl. Phys., 110, 124908, 10.1063/1.3665646
Fabelinskii, 1968
Dil, 1982, Brillouin scattering in condensed matter, Rep. Prog. Phys., 45, 285, 10.1088/0034-4885/45/3/002
Wang, 2021, Shear wave generation by mode conversion in picosecond ultrasonics: impact of grain orientation and material properties, J. Am. Ceram. Soc.
Daubechies, 2011, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool, Appl. Comput. Harmonic Anal., 30, 243, 10.1016/j.acha.2010.08.002
Auger, 2013, Time-frequency reassignment and synchrosqueezing: an overview, IEEE Signal Process. Mag., 30, 32, 10.1109/MSP.2013.2265316
Meignen, 2017, On demodulation, ridge detection and synchrosqueezing for multicomponent signals, IEEE Trans. Signal Process., 65, 2093, 10.1109/TSP.2017.2656838
Meignen, 2019, Synchrosqueezing transforms: from low- to high-frequency modulations and perspectives, Compt. Rend. Phys., 20, 449, 10.1016/j.crhy.2019.07.001
Thakur, 2013, The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications, Signal Process., 93, 1079, 10.1016/j.sigpro.2012.11.029
Bause, 2013, Ultrasonic waveguide signal decomposition using the synchrosqueezed wavelet transform for modal group delay computation, 2013 IEEE International Ultrasonics Symposium (IUS), 671, 10.1109/ULTSYM.2013.0173
Hazra, 2017, Fault detection of gearboxes using synchro-squeezing transform, J. Vibr. Control, 23, 3108, 10.1177/1077546315627242
Otsu, 1979, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9, 62, 10.1109/TSMC.1979.4310076
Edelsbrunner, 1983, On the shape of a set of points in the plane, IEEE Trans. Inform. Theory, 29, 551, 10.1109/TIT.1983.1056714
Edelsbrunner, 1994, Three-dimensional alpha shapes, ACM Trans. Graph., 13, 43, 10.1145/174462.156635
Chung, 1979, The determination of the orientation of cubic crystals from measured sound velocities, Phys. Stat. Solidi (a), 52, 29, 10.1002/pssa.2210520103
Duda, 2002, Application of ultrasonic measurements to determine the orientation of crystalline samples, Physica B: Condens. Matter, 316–317, 118, 10.1016/S0921-4526(02)00436-2
Gusev, 2021