Photo-thermo-electric modeling of photon-enhanced thermionic emission with concentrated solar power

Solar Energy Materials and Solar Cells - Tập 246 - Trang 111922 - 2022
Hao Qiu1, Haoran Xu1, Mingjiang Ni1, Gang Xiao1
1State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China

Tài liệu tham khảo

Huang, 2021, Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems, Light Sci. Appl., 10, 28, 10.1038/s41377-021-00465-1 Fang, 2020, Thermodynamic evaluation of a concentrated photochemical–photovoltaic–thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization, Appl. Energy, 279, 10.1016/j.apenergy.2020.115778 Campbell, 2021, Progress toward high power output in thermionic energy converters, Adv. Sci., 8, 10.1002/advs.202003812 Datas, 2016, Hybrid thermionic-photovoltaic converter, Appl. Phys. Lett., 108, 1203, 10.1063/1.4945712 Datas, 2019, Thermionic-enhanced near-field thermophotovoltaics, Nano Energy, 61, 10, 10.1016/j.nanoen.2019.04.039 Bellucci, 2020, Photovoltaic anodes for enhanced thermionic energy conversion, ACS Energy Lett., 5, 1364, 10.1021/acsenergylett.0c00022 Bellucci, 2022, A three-terminal hybrid thermionic-photovoltaic energy converter, Adv. Energy Mater., 10.1002/aenm.202200357 Trucchi, 2018, Solar thermionic-thermoelectric generator (ST2G): concept, materials engineering, and prototype demonstration, Adv. Energy Mater., 8, 10.1002/aenm.201802310 Naito, 1996, Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system, Sol. Energy, 58, 191, 10.1016/S0038-092X(96)00084-9 Schwede, 2013, Photon-enhanced thermionic emission from heterostructures with low interface recombination, Nat. Commun., 4, 1576, 10.1038/ncomms2577 Schwede, 2010, Photon-enhanced thermionic emission for solar concentrator systems, Nat. Mater., 9, 762, 10.1038/nmat2814 Rahman, 2021, Semiconductor thermionics for next generation solar cells: photon enhanced or pure thermionic?, Nat. Commun., 12, 4622, 10.1038/s41467-021-24891-2 Segev, 2015, Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion, Sol. Energy Mater. Sol. Cells, 140, 464, 10.1016/j.solmat.2015.05.001 Xiao, 2018, Thermodynamic assessment of solar photon-enhanced thermionic conversion, Appl. Energy, 223, 134, 10.1016/j.apenergy.2018.04.044 Varpula, 2015, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells, Sol. Energy Mater. Sol. Cells, 134, 351, 10.1016/j.solmat.2014.12.021 Wang, 2017, High-performance Photon-enhanced thermionic emission solar energy converters with AlxGa1−xAs∕GaAs cathode under multilevel built-in electric field, Opt Commun., 402, 85, 10.1016/j.optcom.2017.05.030 Feng, 2018, High-efficiency AlxGa1−xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters, Opt Commun., 413, 1, 10.1016/j.optcom.2017.12.027 Liu, 2019, High-performance GaAs nanowire cathode for photon-enhanced thermionic emission solar converters, J. Mater. Sci., 54, 5605, 10.1007/s10853-018-03231-8 Elahi, 2021, Comprehensive energy balance analysis of photon-enhanced thermionic power generation considering concentrated solar absorption distribution, Sol. Energy Mater. Sol. Cells, 226, 10.1016/j.solmat.2021.111067 Su, 2014, Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell, Sol. Energy Mater. Sol. Cells, 121, 137, 10.1016/j.solmat.2013.11.008 Wang, 2019, Optimal design of the interelectrode space in a photon-enhanced thermionic emission solar cell, Appl. Therm. Eng., 157, 10.1016/j.applthermaleng.2019.113758 Datas, 2019, Thermionic-enhanced near-field thermophotovoltaics for medium-grade heat sources, Appl. Phys. Lett., 114, 10.1063/1.5078602 Liu, 2019, Effects of near-field photon tunneling on the performance of photon–enhanced thermionic emission energy conversion, J. Quant. Spectrosc. Radiat. Transfer, 222–223, 223, 10.1016/j.jqsrt.2018.10.036 Qiu, 2021, A third-order numerical model and transient characterization of a β-type Stirling engine, Energy, 222, 10.1016/j.energy.2021.119973 Xiao, 2021, Working mechanism and characteristics of gas parcels in the Stirling cycle, Energy, 229, 10.1016/j.energy.2021.120708 Segev, 2013, Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters, J. Appl. Phys., 114, 10.1063/1.4816256 Beaudoin, 1997, Optical absorption edge of semi-insulating GaAs and InP at high temperatures, Appl. Phys. Lett., 70, 3540, 10.1063/1.119226 Sotoodeh, 2000, Empirical low-field mobility model for III–V compounds applicable in device simulation codes, J. Appl. Phys., 87, 2890, 10.1063/1.372274 Nelson, 1978, Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs, J. Appl. Phys., 49, 6103, 10.1063/1.324530 Rosenwaks, 1990, Effects of reactive versus unreactive metals on the surface recombination velocity at CdS and CdSe(1120) interfaces, Appl. Phys. Lett., 57, 458, 10.1063/1.103665 Rakić, 1996, Modeling the optical dielectric function of GaAs and AlAs: extension of Adachi's model, J. Appl. Phys., 80, 5909, 10.1063/1.363586 Yuan, 2015, Engineering ultra-low work function of graphene, Nano Lett., 15, 6475, 10.1021/acs.nanolett.5b01916 Rahman, 2020, Interplay between near-field radiative coupling and space-charge effects in a microgap thermionic energy converter under fixed heat input, Phys. Rev. Appl., 14, 10.1103/PhysRevApplied.14.024082 Jensen, 2021, Submicrometer-gap thermionic power generation based on comprehensive modeling of charge and thermal transport, Phys. Rev. Appl., 15, 10.1103/PhysRevApplied.15.024062 Thieme, 1979