Photo-thermo-electric modeling of photon-enhanced thermionic emission with concentrated solar power
Tài liệu tham khảo
Huang, 2021, Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems, Light Sci. Appl., 10, 28, 10.1038/s41377-021-00465-1
Fang, 2020, Thermodynamic evaluation of a concentrated photochemical–photovoltaic–thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization, Appl. Energy, 279, 10.1016/j.apenergy.2020.115778
Campbell, 2021, Progress toward high power output in thermionic energy converters, Adv. Sci., 8, 10.1002/advs.202003812
Datas, 2016, Hybrid thermionic-photovoltaic converter, Appl. Phys. Lett., 108, 1203, 10.1063/1.4945712
Datas, 2019, Thermionic-enhanced near-field thermophotovoltaics, Nano Energy, 61, 10, 10.1016/j.nanoen.2019.04.039
Bellucci, 2020, Photovoltaic anodes for enhanced thermionic energy conversion, ACS Energy Lett., 5, 1364, 10.1021/acsenergylett.0c00022
Bellucci, 2022, A three-terminal hybrid thermionic-photovoltaic energy converter, Adv. Energy Mater., 10.1002/aenm.202200357
Trucchi, 2018, Solar thermionic-thermoelectric generator (ST2G): concept, materials engineering, and prototype demonstration, Adv. Energy Mater., 8, 10.1002/aenm.201802310
Naito, 1996, Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system, Sol. Energy, 58, 191, 10.1016/S0038-092X(96)00084-9
Schwede, 2013, Photon-enhanced thermionic emission from heterostructures with low interface recombination, Nat. Commun., 4, 1576, 10.1038/ncomms2577
Schwede, 2010, Photon-enhanced thermionic emission for solar concentrator systems, Nat. Mater., 9, 762, 10.1038/nmat2814
Rahman, 2021, Semiconductor thermionics for next generation solar cells: photon enhanced or pure thermionic?, Nat. Commun., 12, 4622, 10.1038/s41467-021-24891-2
Segev, 2015, Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion, Sol. Energy Mater. Sol. Cells, 140, 464, 10.1016/j.solmat.2015.05.001
Xiao, 2018, Thermodynamic assessment of solar photon-enhanced thermionic conversion, Appl. Energy, 223, 134, 10.1016/j.apenergy.2018.04.044
Varpula, 2015, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells, Sol. Energy Mater. Sol. Cells, 134, 351, 10.1016/j.solmat.2014.12.021
Wang, 2017, High-performance Photon-enhanced thermionic emission solar energy converters with AlxGa1−xAs∕GaAs cathode under multilevel built-in electric field, Opt Commun., 402, 85, 10.1016/j.optcom.2017.05.030
Feng, 2018, High-efficiency AlxGa1−xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters, Opt Commun., 413, 1, 10.1016/j.optcom.2017.12.027
Liu, 2019, High-performance GaAs nanowire cathode for photon-enhanced thermionic emission solar converters, J. Mater. Sci., 54, 5605, 10.1007/s10853-018-03231-8
Elahi, 2021, Comprehensive energy balance analysis of photon-enhanced thermionic power generation considering concentrated solar absorption distribution, Sol. Energy Mater. Sol. Cells, 226, 10.1016/j.solmat.2021.111067
Su, 2014, Space charge effects on the maximum efficiency and parametric design of a photon-enhanced thermionic solar cell, Sol. Energy Mater. Sol. Cells, 121, 137, 10.1016/j.solmat.2013.11.008
Wang, 2019, Optimal design of the interelectrode space in a photon-enhanced thermionic emission solar cell, Appl. Therm. Eng., 157, 10.1016/j.applthermaleng.2019.113758
Datas, 2019, Thermionic-enhanced near-field thermophotovoltaics for medium-grade heat sources, Appl. Phys. Lett., 114, 10.1063/1.5078602
Liu, 2019, Effects of near-field photon tunneling on the performance of photon–enhanced thermionic emission energy conversion, J. Quant. Spectrosc. Radiat. Transfer, 222–223, 223, 10.1016/j.jqsrt.2018.10.036
Qiu, 2021, A third-order numerical model and transient characterization of a β-type Stirling engine, Energy, 222, 10.1016/j.energy.2021.119973
Xiao, 2021, Working mechanism and characteristics of gas parcels in the Stirling cycle, Energy, 229, 10.1016/j.energy.2021.120708
Segev, 2013, Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters, J. Appl. Phys., 114, 10.1063/1.4816256
Beaudoin, 1997, Optical absorption edge of semi-insulating GaAs and InP at high temperatures, Appl. Phys. Lett., 70, 3540, 10.1063/1.119226
Sotoodeh, 2000, Empirical low-field mobility model for III–V compounds applicable in device simulation codes, J. Appl. Phys., 87, 2890, 10.1063/1.372274
Nelson, 1978, Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs, J. Appl. Phys., 49, 6103, 10.1063/1.324530
Rosenwaks, 1990, Effects of reactive versus unreactive metals on the surface recombination velocity at CdS and CdSe(1120) interfaces, Appl. Phys. Lett., 57, 458, 10.1063/1.103665
Rakić, 1996, Modeling the optical dielectric function of GaAs and AlAs: extension of Adachi's model, J. Appl. Phys., 80, 5909, 10.1063/1.363586
Yuan, 2015, Engineering ultra-low work function of graphene, Nano Lett., 15, 6475, 10.1021/acs.nanolett.5b01916
Rahman, 2020, Interplay between near-field radiative coupling and space-charge effects in a microgap thermionic energy converter under fixed heat input, Phys. Rev. Appl., 14, 10.1103/PhysRevApplied.14.024082
Jensen, 2021, Submicrometer-gap thermionic power generation based on comprehensive modeling of charge and thermal transport, Phys. Rev. Appl., 15, 10.1103/PhysRevApplied.15.024062
Thieme, 1979