Photo-oxidation of proteins
Tóm tắt
Từ khóa
Tài liệu tham khảo
R. V. Bensasson, E. J. Land and T. G. Truscott, Pulse radiolysis and flash photolysis: Contributions to the chemistry of biology and medicine, Pergamon Press, Oxford, 1983.
R. V. Bensasson, E. J. Land and T. G. Truscott, Excited states and free radicals in biology and medicine, Oxford University Press, Oxford, 1993.
M. J. Davies, Reactive species formed on proteins exposed to singlet oxygen, Photochem. Photobiol. Sci., 2004, 3, 17–25.
M. J. Davies, R. J. W. Truscott, Photo-oxidation of protein and its role in cataractogenesis, J. Photochem. Photobiol., B, 2001, 63, 114–125.
S. G. Afonso, R. E. de Salamanca, A. M. D. Batlle, The photodynamic and non-photodynamic actions of porphyrins, Braz. J. Med. Biol. Res., 1999, 32, 255–266.
J. A. Silvester, G. S. Timmins, M. J. Davies, Photodynamically-generated bovine serum albumin radicals: Evidence for damage transfer and oxidation at cysteine and tryptophan residues, Free Radical Biol. Med., 1998, 24, 754–766.
L. Bova, A. M. Wood, J. F. Jamie, R. J. W. Truscott, UV filter compounds in human lenses: the origin of AHBG, Invest. Ophthalmol. Vis. Sci., 1999, 40, 3237–3244.
A. Korlimbinis, R. J. Truscott, Identification of 3-hydroxykynurenine bound to proteins in the human lens. A possible role in age-related nuclear cataract, Biochemistry, 2006, 45, 1950–1960.
M. R. Clausen, K. Huvaere, L. H. Skibsted, J. Stagsted, Characterization of peroxides formed by riboflavin and light exposure of milk. Detection of urate hydroperoxide as a novel oxidation product, J. Agric. Food Chem., 2010, 58, 481–487.
D. Phillips, Light relief: Photochemistry and medicine, Photochem. Photobiol. Sci., 2010, 9, 1589–1596.
E. S. Nyman, P. H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 73, 1–28.
T. Maisch, J. Baier, B. Franz, M. Maier, M. Landthaler, R. M. Szeimies, W. Baumler, The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 7223–7228.
S. Pervaiz, M. Olivo, Art and science of photodynamic therapy, Clin. Exp. Pharmacol. Physiol., 2006, 33, 551–556.
S. Choudhary, K. Nouri, M. L. Elsaie, Photodynamic therapy in dermatology: A review, Lasers Med. Sci., 2009, 24, 971–980.
R. C. Straight and J. D. Spikes, Photosensitized oxidation of biomolecules, in Singlet O2, ed. A. A. Frimer, CRC Press, Boca Raton, 1985, pp. 91–143.
M. J. Davies, Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun., 2003, 305, 761–770.
E. J. Hart, M. Anbar, The hydrated electron, Wiley-Interscience, New York, 1970.
W. M. Garrison, Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins, Chem. Rev., 1987, 87, 381–398.
C. von Sonntag, The chemical basis of radiation biology, Taylor and Francis, London, 1987.
M. J. Davies and R. T. Dean, Radical-mediated protein oxidation: From chemistry to medicine, Oxford University Press, Oxford, 1997.
F. Wilkinson, W. P. Helman, A. B. Ross, Rate constants for the decay and reactions of the lowest electronically excited state of molecular oxygen in solution. An expanded and revised compilation, J. Phys. Chem. Ref. Data, 1995, 24, 663–1021.
G. Papeschi, M. Monici, S. Pinzauti, Ph effect on dye sensitized photooxidation of aminoacids and albumins, Med. Biol. Environ., 1982, 10, 245–250.
D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids. I. Tryptophan and its simple derivatives, Photochem. Photobiol., 2008, 39, 537–562.
M. J. Davies, B. C. Gilbert, Free radical reactions. Fragmentation and rearrangements in aqueous solution, Adv. Detailed React. Mech., 1991, 1, 35–81.
L. P. Candeias, P. Wardman, R. P. Mason, The reaction of oxygen with radicals from oxidation of tryptophan and indole-3-acetic acid, Biophys. J., 1997, 67, 229–237.
D. J. Kelman, J. A. DeGray, R. P. Mason, Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates, J. Biol. Chem., 1994, 269, 7458–7463.
T. Nauser, W. H. Koppenol, J. M. Gebicki, The kinetics of oxidation of GSH by protein radicals, Biochem. J., 2005, 392, 693–701.
D. Steinmann, T. Nauser, J. Beld, M. Tanner, D. Gunther, P. L. Bounds, W. H. Koppenol, Kinetics of tyrosyl radical reduction by selenocysteine, Biochemistry, 2008, 47, 9602–9607.
A. S. Domazou, W. H. Koppenol, J. M. Gebicki, Efficient repair of protein radicals by ascorbate, Free Radical Biol. Med., 2009, 46, 1049–1057.
J. M. Gebicki, T. Nauser, A. Domazou, D. Steinmann, P. L. Bounds, W. H. Koppenol, Reduction of protein radicals by GSH and ascorbate: Potential biological significance, Amino Acids, 2010, 39, 1131–1137.
B. M. Hoey, J. Butler, The repair of oxidized amino acids by antioxidants, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1984, 791, 212–218.
D. N. Nikogosyan, H. Gorner, Photolysis of aromatic amino acids in aqueous solution by nanosecond 248 and 193 nm laser light, J. Photochem. Photobiol., B, 1992, 13, 219–234.
K. L. Stevenson, G. A. Papadantonakis, P. R. LeBreton, Nanosecond UV laser photoionization of aqueous tryptophan: Temperature dependence of quantum yield, mechanism, and kinetics of hydrated electron decay, J. Photochem. Photobiol., A, 2000, 133, 159–167.
Y. P. Tsentalovich, O. A. Snytnikova, R. Z. Sagdeev, Properties of excited states of aqueous tryptophan, J. Photochem. Photobiol., A, 2004, 162, 371–379.
M. Nakagawa, H. Watanabe, S. Kodato, H. Okajima, T. Hino, J. L. Flippen, B. Witkop, A valid model for the mechanism of oxidation of tryptophan to formylkynurenine -25 years later, Proc. Natl. Acad. Sci. U. S. A., 1977, 74, 4730–4733.
I. Saito, T. Matsuura, M. Nakagawa, T. Hino, Peroxidic intermediates in photosensitized oxygenation of tryptophan derivatives, Acc. Chem. Res., 1977, 10, 346–352.
M. Gracanin, C. L. Hawkins, D. I. Pattison, M. J. Davies, Singlet oxygen-mediated amino acid and protein oxidation: Formation of tryptophan peroxides and decomposition products, Free Radical Biol. Med., 2009, 47, 92–102.
A. Posadaz, A. Biasutti, C. Casale, J. Sanz, F. Amat-Guerri, N. A. Garcia, Rose bengal-sensitized photooxidation of the dipeptides l-tryptophyl-l-phenylalanine, l-tryptophyl-l-tyrosine and l-tryptophyl-l-tryptophan: Kinetics, mechanism and photoproducts, Photochem. Photobiol., 2004, 80, 132–138.
G. E. Ronsein, M. C. de Oliveira, M. H. de Medeiros, P. Di Mascio, Characterization of O2(1Δg)-derived oxidation products of tryptophan: A combination of tandem mass spectrometry analyses and isotopic labeling studies, J. Am. Soc. Mass Spectrom., 2009, 20, 188–197.
G. E. Ronsein, M. C. Oliveira, S. Miyamoto, M. H. Medeiros, P. Di Mascio, Tryptophan oxidation by singlet molecular oxygen [O2(1Δg)]: Mechanistic studies using 18O-labeled hydroperoxides, mass spectrometry, and light emission measurements, Chem. Res. Toxicol., 2008, 21, 1271–1283.
R. W. Redmond, J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.
A. J. Grosvenor, J. D. Morton, J. M. Dyer, Profiling of residue-level photo-oxidative damage in peptides, Amino Acids, 2009, 39, 285–296.
A. J. Grosvenor, J. D. Morton, J. M. Dyer, Isobaric labeling approach to the tracking and relative quantitation of peptide damage at the primary structural level, J. Agric. Food Chem., 2010, 58, 12672–12677.
B. D. Hood, B. Garner, R. J. Truscott, Human lens coloration and aging. Evidence for crystallin modification by the major ultraviolet filter, 3-hydroxy-kynurenine O-beta-d-glucoside, J. Biol. Chem., 1999, 274, 32547–32550.
S. Vazquez, J. A. Aquilina, J. F. Jamie, M. M. Sheil, R. J. Truscott, Novel protein modification by kynurenine in human lenses, J. Biol. Chem., 2001, 277, 4867–4873.
N. R. Parker, A. Korlimbinis, J. F. Jamie, M. J. Davies, R. J. Truscott, Reversible binding of kynurenine to lens proteins: Potential protection by glutathione in young lenses, Invest. Ophthalmol. Visual Sci., 2007, 48, 3705–3713.
J. Mizdrak, P. G. Hains, R. J. Truscott, J. F. Jamie, M. J. Davies, Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage, Free Radical Biol. Med., 2008, 44, 1108–1119.
N. R. Parker, J. F. Jamie, M. J. Davies, R. J. Truscott, Protein-bound kynurenine is a photosensitizer of oxidative damage, Free Radical Biol. Med., 2004, 37, 1479–1489.
D. I. Pattison, M. J. Davies, Actions of ultraviolet light on cellular structures, Exs, 2006, 96, 131–157.
J. A. Irwin, H. Ostdal, M. J. Davies, Myoglobin-induced oxidative damage: Evidence for radical transfer from oxidized myoglobin to other proteins and antioxidants, Arch. Biochem. Biophys., 1999, 362, 94–104.
H. Ostdal, M. J. Davies, H. J. Andersen, Reaction between protein radicals and other biomolecules, Free Radical Biol. Med., 2002, 33, 201–209.
H. Ostdal, L. H. Skibsted, H. J. Andersen, Formation of long-lived protein radicals in the reaction between H2O2-activated metmyoglobin and other proteins, Free Radical Biol. Med., 1997, 23, 754–761.
L. K. Folkes, M. Trujillo, S. Bartesaghi, R. Radi, P. Wardman, Kinetics of reduction of tyrosine phenoxyl radicals by glutathione, Arch. Biochem. Biophys., 2011, 506, 242–249.
J. P. Eiserich, J. Butler, A. von der Vliet, C. E. Cross, B. Halliwell, Nitric oxide rapidly scavenges tyrosine and tryptophan radicals, Biochem. J., 1995, 310, 745–749.
S. Criado, A. T. Soltermann, J. M. Marioli, N. A. Garcia, Sensitized photooxidation of di- and tripeptides of tyrosine, Photochem. Photobiol., 1998, 68, 453–458.
E. Katsuya, K. Seya, H. Hikino, Photo-oxidation of l-tyrosine, an efficient, 1,4-chirality transfer reaction, J. Chem. Soc., Chem. Commun., 1988 934–935.
A. Wright, W. A. Bubb, C. L. Hawkins, M. J. Davies, Singlet oxygen-mediated protein oxidation: Evidence for the formation of reactive side-chain peroxides on tyrosine residues, Photochem. Photobiol., 2002, 76, 35–46.
F. M. Jin, J. Leitich, C. von Sonntag, The photolysis (? = 254 nm) of tyrosine in aqueous solutions in the absence and presence of oxygen - the reaction of tyrosine with singlet oxygen, J. Photochem. Photobiol., A, 1995, 92, 147–153.
A. Wright, C. L. Hawkins, M. J. Davies, Singlet oxygen-mediated protein oxidation: Evidence for the formation of reactive peroxides, Redox Rep., 2000, 5, 159–161.
D. Balasubramanian, X. Du, J. S. J. Zigler, The reaction of singlet oxygen with proteins, with special reference to crystallins, Photochem. Photobiol., 1990, 52, 761–768.
D. Balasubramanian, R. Kanwar, Molecular pathology of dityrosine cross-links in proteins: Structural and functional analysis of four proteins, Mol. Cell. Biochem., 2002, 234/235, 27–38.
M. A. Lam, D. I. Pattison, S. E. Bottle, D. J. Keddie, M. J. Davies, Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals, Chem. Res. Toxicol., 2008, 21, 2111–2119.
N. R. Parker, J. F. Jamie, M. J. Davies, R. J. W. Truscott, Protein-bound kynurenine is a photosensitizer of oxidative damage, Free Radical Biol. Med., 2004, 37, 1479–1489.
D. V. Bent, E. Hayon, Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine, J. Phys. Chem., 1975, 97, 2606–2612.
K. Huvaere, L. H. Skibsted, Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins, J. Am. Chem. Soc., 2009, 131, 8049–8060.
V. V. Agon, W. A. Bubb, A. Wright, C. L. Hawkins, M. J. Davies, Sensitizer-mediated photooxidation of histidine residues: Evidence for the formation of reactive side-chain peroxides, Free Radical Biol. Med., 2006, 40, 698–710.
M. Tomita, M. Irie, T. Ukita, Sensitized photooxidation of histidine and its derivatives. Products and mechanism of the reaction, Biochemistry, 1969, 8, 5149–5160.
P. Kang, C. S. Foote, Synthesis of a C-13, N-15 labeled imidazole and characterization of the 2,5-endoperoxide and its decomposition, Tetrahedron Lett., 2000, 41, 9623–9626.
P. Kang, C. S. Foote, Photosensitized oxidation of C-13,N-15-labeled imidazole derivatives, J. Am. Chem. Soc., 2002, 124, 9629–9638.
S. Kai, M. Suzuki, Dye-sensitized photooxidation of 2,4-disubstituted imidazoles - the formation of isomeric imidazolinones, Heterocycles, 1996, 43, 1185–1188.
M. Tomita, M. Irie, T. Ukita, Sensitized photooxidation of N-benzoyl histidine, Tetrahedron Lett., 1968, 9, 4933–4936.
S. H. Chang, G. M. Teshima, T. Milby, B. Gillece-Castro, E. Canova-Davis, Metal-catalyzed photooxidation of histidine in human growth hormone, Anal. Biochem., 1997, 244, 221–227.
H. R. Shen, J. D. Spikes, P. Kopecekova, J. Kopecek, Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl)methacrylamide copolymers, J. Photochem. Photobiol., B, 1996, 34, 203–210.
H.-R. Shen, J. D. Spikes, C. J. Smith, J. Kopecek, Photodynamic cross-linking of proteins IV. Nature, of the His-His bond(s) formed in the Rose Bengal-photosensitized cross-linking of N-benzoyl-l-histidine, J. Photochem. Photobiol., A, 2000, 130, 1–6.
J. M. Dyer, S. Clerens, C. D. Cornellison, C. J. Murphy, G. Maurdev, K. R. Millington, Photoproducts formed in the photoyellowing of collagen in the presence of a fluorescent whitening agent, Photochem. Photobiol., 2009, 85, 1314–1321.
D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids. III. Cystine and its simple derivatives, Photochem. Photobiol., 1984, 39, 577–583.
K. R. Millington, J. S. Church, The photodegradation of wool keratin. 2. Proposed mechanisms involving cystine, J. Photochem. Photobiol., B, 1997, 39, 204–212.
C. Kolano, J. Helbing, G. Bucher, W. Sander, P. Hamm, Intramolecular disulfide bridges as a phototrigger to monitor the dynamics of small cyclic peptides, J. Phys. Chem. B, 2007, 111, 11297–11302.
O. Mozziconacci, B. A. Kerwin, C. Schöneich, Photolysis of an intrachain peptide disulfide bond: Primary and secondary processes, formation of H2S, and hydrogen transfer reactions, J. Phys. Chem. B, 2010, 114, 3668–3688.
D. V. Bent, E. Hayon, Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine, J. Phys. Chem., 1975, 97, 2599–2606.
D. V. Bent, E. Hayon, Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan, J. Phys. Chem., 1975, 97, 2612–2619.
D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids. II. Tyrosine and its simple derivatives, Photochem. Photobiol., 1984, 39, 363–375.
A. Vanhooren, K. De Vriendt, B. Devreese, A. Chedad, A. Sterling, H. Van Dael, J. Van Beeumen, I. Hanssens, Selectivity of tryptophan residues in mediating photolysis of disulfide bridges in goat alpha-lactalbumin, Biochemistry, 2006, 45, 2085–2093.
C. Schöneich, K.-D. Asmus, Determination of absolute rate constants for the reversible hydrogen-atom transfer between thiyl radicals and alcohols or ethers, J. Chem. Soc., Faraday Trans., 1995, 91, 1923–1930.
C. Schöneich, K. D. Asmus, Reaction of thiyl radicals with alcohols, ethers and polyunsaturated fatty acids: A possible role of thiyl free radicals in thiol mutagenesis?, Radiat. Environ. Biophys., 1990, 29, 263–271.
C. Schöneich, Mechanisms of protein damage induced by cysteine thiyl radical formation, Chem. Res. Toxicol., 2008, 21, 1175–1179.
O. Mozziconacci, V. Sharov, T. D. Williams, B. A. Kerwin, C. Schöneich, Peptide cysteine thiyl radicals abstract hydrogen atoms from surrounding amino acids: The photolysis of a cystine containing model peptide, J. Phys. Chem. B, 2008, 112, 9250–9257.
T. Nauser, G. Casi, W. H. Koppenol, C. Schöneich, Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and glycine and alanine in model peptides: Absolute rate constants derived from pulse radiolysis and laser flash photolysis, J. Phys. Chem. B, 2008, 112, 15034–15044.
P. Wardman, C. von Sonntag, Kinetic factors that control the fate of thiyl radicals in cells, Methods Enzymol., 1995, 251, 31–45.
R. W. Murray, S. L. Jindal, Photosensitized oxidation of disulfides related to cystine, Photochem. Photobiol., 1972, 16, 147–151.
C. S. Foote, J. W. Peters, Chemistry of singlet oxygen. XIV. A reactive intermediate in sulfide photooxidation, J. Am. Chem. Soc., 1971, 93, 3795–3796.
M. Rougee, R. V. Bensasson, E. J. Land, R. Pariente, Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity, Photochem. Photobiol., 1988, 47, 485–489.
C. Schöneich, Methionine oxidation by reactive oxygen species: Reaction mechanisms and relevance to alzheimer’s disease, Biochim. Biophys. Acta, Proteins Proteomics, 2005, 1703, 111–119.
G. L. Hug, K. Bobrowski, H. Kozubek, B. Marciniak, Photooxidation of methionine derivatives by the 4-carboxybenzophenone triplet state in aqueous solution. Intracomplex proton transfer involving the amino group, Photochem. Photobiol., 1998, 68, 785–796.
G. L. Hug, K. Bobrowski, H. Kozubek, B. Marciniak, Photo-oxidation of methionine-containing peptides by the 4-carboxybenzophenone triplet state in aqueous solution. Competition between intramolecular two-centered three-electron bonded (S … S)(+) and (S … N)(+) formation, Photochem. Photobiol., 2000, 72, 1–9.
T. Pedzinski, A. Markiewicz, B. Marciniak, Photosensitized oxidation of methionine derivatives. Laser flash photolysis studies, Res. Chem. Intermed., 2009, 35, 497–506.
H. Yashiro, R. C. White, A. V. Yurkovskaya, M. D. E. Forbes, Methionine radical cation: Structural studies as a function of pH using X- and Q-band time-resolved electron paramagnetic resonance spectroscopy, J. Phys. Chem. A, 2005, 109, 5855–5864.
G. E. Ronsein, S. Miyamoto, E. Bechara, P. Di Mascio, G. R. Martinez, Singlet oxygen-mediated protein oxidation: Damage mechanisms, detection techniques and biological implications, Quim. Nova, 2006, 29, 563–568.
P. K. Sysak, C. S. Foote, T.-Y. Ching, Chemistry of singlet oxygen - XXV. Photooxygenation, of methionine, Photochem. Photobiol., 1977, 26, 19–27.
A. Karunakaran-Datt, P. Kennepohl, Redox photochemistry of methionine by sulfur K-edge X-ray absorption spectroscopy: Potential implications for cataract formation, J. Am. Chem. Soc., 2009, 131, 3577–3582.
M. H. Klapper, M. Faraggi, Application of pulse radiolysis to protein chemistry, Q. Rev. Biophys., 1979, 12, 465–519.
W. A. Prutz, Free radical transfer involving sulphur peptide functions, in Sulfur-centered reactive intermediates in chemistry and biology, ed. C. Chatgilialoglu and K.-D. Asmus, Plenum Press, New York, 1990, pp. 389–399.
M. R. DeFelippis, M. Faraggi, M. H. Klapper, Evidence for through-bond long-range electron transfer in peptides, J. Am. Chem. Soc., 1990, 112, 5640–5462.
W. A. Prutz, J. Butler, E. J. Land, Phenol coupling initiated by one-electron oxidation of tyrosine units in peptides and histone, Int. J. Radiat. Biol., 1983, 44, 183–196.
W. A. Prutz, F. Siebert, J. Butler, E. J. Land, A. Menez, T. Montenay-Garestier, Charge transfer in peptides. Intramolecular radical transformations involving methionine, tryptophan and tyrosine, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1982, 705, 139–149.
M. Faraggi, M. R. DeFelippis, M. H. Klapper, Long-range electron transfer between tyrosine and tryptophan in peptides, J. Am. Chem. Soc., 1989, 111, 5141–5145.
M. Faraggi, J. P. Steiner, M. H. Klapper, Intramolecular electron and proton transfer in proteins: CO2- reduction of riboflavin binding protein and ribonuclease A, Biochemistry, 1985, 24, 3273–3279.
L. Grierson, K. Hildenbrand, E. Bothe, Intramolecular transformation reaction of the glutathione thiyl radical into a non-sulphur-centred radical: A pulse-radiolysis and EPR study, Int. J. Radiat. Biol., 1992, 62, 265–277.
R. Zhao, J. Lind, G. Merenyi, T. E. Eriksen, Significance of the intramolecular transformation of glutathione thiyl radicals to a-aminoalkyl radicals. Thermochemical and biological implications, J. Chem. Soc., Perkin Trans. 2, 1997 569–574.
A. Rauk, D. Yu, D. A. Armstrong, Oxidative damage to and by cysteine in proteins: An ab initio study of the radical structures, C–H, S–H, and C–C bond dissociation energies, and transition structures for H abstraction by thiyl radicals, J. Am. Chem. Soc., 1998, 120, 8848–8855.
R. Zhao, J. Lind, G. Merényi, T. E. Eriksen, Kinetics of one-electron oxidation of thiols and hydrogen abstraction by thiyl radicals from a-amino C–H bonds, J. Am. Chem. Soc., 1994, 116, 12010–12015.
O. Mozziconacci, B. A. Kerwin, C. Schöneich, Reversible hydrogen transfer between cysteine thiyl radical and glycine and alanine in model peptides: Covalent H/D exchange, radical–radical reactions, and L- to D-Ala conversion, J. Phys. Chem. B, 2010, 114, 6751–6762.
O. Mozziconacci, T. D. Williams, B. A. Kerwin, C. Schöneich, Reversible intramolecular hydrogen transfer between protein cysteine thiyl radicals and alpha C–H bonds in insulin: Control of selectivity by secondary structure, J. Phys. Chem. B, 2008, 112, 15921–15932.
E. Silva, C. De Landea, A. M. Edwards, E. Lissi, Lysozyme photo-oxidation by singlet oxygen: Properties of the partially inactivated enzyme, J. Photochem. Photobiol., B, 2000, 55, 196–200.
C. Prinsze, T. M. Dubbelman, J. Van Steveninck, Protein damage, induced by small amounts of photodynamically generated singlet oxygen or hydroxyl radicals, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1990, 1038, 152–157.
C. Prinsze, T. M. Dubbelman, J. Van Steveninck, Potentiation of thermal inactivation of glyceraldehyde-3-phosphate dehydrogenase by photodynamic treatment. A possible model for the synergistic interaction between photodynamic therapy and hyperthermia, Biochem. J., 1991, 276, 357–362.
T. K. Dalsgaard, D. Otzen, J. H. Nielsen, L. B. Larsen, Changes in structures of milk proteins upon photo-oxidation, J. Agric. Food Chem., 2007, 55, 10968–10976.
L. Redecke, S. Binder, M. I. Y. Elmallah, R. Broadbent, C. Tilkorn, B. Schulz, P. May, A. Goos, A. Eich, M. Rubhausen, C. Betzel, UV-light-induced conversion and aggregation of prion proteins, Free Radical Biol. Med., 2009, 46, 1353–1361.
S. Roy, B. D. Mason, C. S. Schöneich, J. F. Carpenter, T. C. Boone, B. A. Kerwin, Light-induced aggregation of type I soluble tumor necrosis factor receptor, J. Pharm. Sci., 2009, 98, 3182–3199.
E. Silva, M. Barrera, The riboflavin-sensitized photooxidation of horseradish apoperoxidase, Radiat. Environ. Biophys., 1985, 24, 57–61.
J. D. Goosey, J. S. Zigler, Jr., J. H. Kinoshita, Cross-linking of lens crystallins in a photodynamic system: A process mediated by singlet oxygen, Science, 1980, 208, 1278–1280.
M. Francis Simpanya, R. R. Ansari, V. Leverenz, F. J. Giblin, Measurement of lens protein aggregation in vivo using dynamic light scattering in a guinea pig/UVA model for nuclear cataract, Photochem. Photobiol., 2008, 84, 1589–1595.
W. Wang, S. Nema, D. Teagarden, Protein aggregation-pathways and influencing factors, Int. J. Pharm., 2010, 390, 89–99.
H. Shen, J. D. Spikes, C. J. Smith, J. Kopecek, Photodynamic cross-linking of proteins V. Nature, of the tyrosine-tyrosine bonds formed in the fmn-sensitized intermolecular cross-linking of N-acetyl-L-tyrosine, J. Photochem. Photobiol., A, 2000, 133, 115–122.
T. M. Dubbelman, C. Haasnoot, J. van Steveninck, Temperature dependence of photodynamic red cell membrane damage, Biochim. Biophys. Acta, Biomembr., 1980, 601, 220–227.
H. Verweij, J. van Steveninck, Model studies on photodynamic crosslinking, Photochem. Photobiol., 1982, 35, 265–267.
J. Dillon, R. Chiesa, R. H. Wang, M. McDermott, Molecular changes during the photooxidation of alpha-crystallin in the presence of uroporphyrin, Photochem. Photobiol., 1993, 57, 526–530.
J. A. Silvester, G. S. Timmins, M. J. Davies, Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin, Arch. Biochem. Biophys., 1998, 350, 249–258.
A. Michaeli, J. Feitelson, Reactivity of singlet oxygen toward amino acids and peptides, Photochem. Photobiol., 1994, 59, 284–289.
S. Rinalducci, N. Campostrini, P. Antonioli, P. G. Righetti, P. Roepstorff, L. Zolla, Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins, J. Proteome Res., 2005, 4, 2327–2337.
T. Gomyo, M. Fujimaki, Studies on changes in protein by dye sensitized photooxidation. Part 3. On the photodecomposition products of lysozyme, Agric. Biol. Chem., 1970, 34, 302–309.
C. L. Hawkins, M. J. Davies, Generation and propagation of radical reactions on proteins, Biochim. Biophys. Acta, Bioenerg., 2001, 1504, 196–219.
H. von Tappeiner, Uber die wirkung fluoreszierender substanzen auf fermente und toxine, Ber. Dtsch. Chem. Ges., 1903, 36, 3035–3038.
A. Wright, C. L. Hawkins, M. J. Davies, Photo-oxidation of cells generates long-lived intracellular protein peroxides, Free Radical Biol. Med., 2003, 34, 637–647.
A. Suryo Rahmanto, P. E. Morgan, C. L. Hawkins, M. J. Davies, Cellular effects of peptide and protein hydroperoxides, Free Radical Biol. Med., 2010, 48, 1071–1078.
A. Suryo Rahmanto, P. E. Morgan, C. L. Hawkins, M. J. Davies, Cellular effects of photo-generated oxidants and long-lived, reactive, hydroperoxide photo-products, Free Radical Biol. Med., 2010, 49, 1505–1515.
P. E. Morgan, R. T. Dean, M. J. Davies, Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack, Eur. J. Biochem., 2003, 269, 1916–1925.
M. B. Hampton, P. E. Morgan, M. J. Davies, Inactivation of cellular caspases by peptide-derived tryptophan and tyrosine peroxides, FEBS Lett., 2002, 527, 289–292.
M. Gracanin, M. J. Davies, Inhibition of protein tyrosine phosphatases by amino acid, peptide and protein hydroperoxides: Potential modulation of cell signaling by protein oxidation products, Free Radical Biol. Med., 2007, 42, 1543–1551.
H. A. Headlam, M. Gracanin, K. J. Rodgers, M. J. Davies, Inhibition of cathepsins and related proteases by amino acid, peptide, and protein hydroperoxides, Free Radical Biol. Med., 2006, 40, 1539–1548.
M. Gracanin, M. A. Lam, P. E. Morgan, K. J. Rodgers, C. L. Hawkins, M. J. Davies, Amino acid, peptide, and protein hydroperoxides and their decomposition products modify the activity of the 26 s proteasome, Free Radical Biol. Med., 2011, 50, 389–399.
P. E. Morgan, R. T. Dean, M. J. Davies, Protective mechanisms against peptide and protein peroxides generated by singlet oxygen, Free Radical Biol. Med., 2004, 36, 484–496.
M. Tanito, A. Nishiyama, T. Tanaka, H. Masutani, H. Nakamura, J. Yodoi, A. Ohira, Change of redox status and modulation by thiol replenishment in retinal photooxidative damage, Invest. Ophthalmol. Vis. Sci., 2002, 43, 2392–2400.
M. Linetsky, J. M. Hill, V. G. Chemoganskiy, F. Hu, B. J. Ortwerth, Studies on the mechanism of the UVA light-dependent loss of glutathione reductase activity in human lenses, Invest. Ophthalmol. Visual Sci., 2003, 44, 3920–3926.
A. V. Peskin, A. G. Cox, P. Nagy, P. E. Morgan, M. B. Hampton, M. J. Davies, C. C. Winterbourn, Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3, Biochem. J., 2010, 432, 313–321.
V. Muthusamy, T. J. Piva, The UV response of the skin: A review of the MAPK, NFkappaB and TNFalpha signal transduction pathways, Arch. Dermatol. Res., 2009, 302, 5–17.
A. J. Ridley, J. R. Whiteside, T. J. McMillan, S. L. Allinson, Cellular and sub-cellular responses to UVA in relation to carcinogenesis, Int. J. Radiat. Biol., 2009, 85, 177–195.
C. J. Bertling, F. Lin, A. W. Girotti, Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells, Photochem. Photobiol., 1996, 64, 137–142.
G. T. Wondrak, M. K. Jacobson, E. L. Jacobson, Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection, Photochem. Photobiol. Sci., 2006, 5, 215–237.
S. Gross, A. Knebel, T. Tenev, A. Neininger, M. Gaestel, P. Herrlich, F. D. Bohmer, Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction, J. Biol. Chem., 1999, 274, 26378–26386.
Y. Xu, Y. Shao, J. J. Voorhees, G. J. Fisher, Oxidative inhibition of receptor-type protein-tyrosine phosphatase kappa by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes, J. Biol. Chem., 2006, 281, 27389–27397.
P. Gulati, B. Markova, M. Gottlicher, F. D. Bohmer, P. A. Herrlich, UVA inactivates protein tyrosine phosphatases by calpain-mediated degradation, EMBO Rep., 2004, 5, 812–817.
P. Chiarugi, M. L. Taddei, G. Ramponi, Oxidation and tyrosine phosphorylation: Synergistic or antagonistic cues in protein tyrosine phosphatase, Cell. Mol. Life Sci., 2005, 62, 931–936.
R. L. van Montfort, M. Congreve, D. Tisi, R. Carr, H. Jhoti, Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1b, Nature, 2003, 423, 773–777.
J. M. Denu, K. G. Tanner, Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation, Biochemistry, 1998, 37, 5633–5642.
C. von Montfort, V. S. Sharov, S. Metzger, C. Schöneich, H. Sies, L. O. Klotz, Singlet oxygen inactivates protein tyrosine phosphatase-1b by oxidation of the active site cysteine, Biol. Chem., 2006, 387, 1399–1404.
A. Caselli, R. Marzocchini, G. Camici, G. Manao, G. Moneti, G. Pieraccini, G. Ramponi, The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2, J. Biol. Chem., 1998, 273, 32554–32560.
A. Hernandez-Hernandez, M. N. Garabatos, M. C. Rodriguez, M. L. Vidal, A. Lopez-Revuelta, J. I. Sanchez-Gallego, M. Llanillo, J. Sanchez-Yague, Structural characteristics of a lipid peroxidation product, trans-2-nonenal, that favour inhibition of membrane-associated phosphotyrosine phosphatase activity, Biochim. Biophys. Acta, Gen. Subj., 2005, 1726, 317–325.
G. A. Knock, J. P. Ward, Redox regulation of protein kinases as a modulator of vascular function, Antioxid. Redox Signal., 2011 10.1089/ars.2010.3614.
R. Gopalakrishna, S. Jaken, Protein kinase c signaling and oxidative stress, Free Radical Biol. Med., 2000, 28, 1349–1361.
H. Lenz, M. Schmidt, V. Welge, U. Schlattner, T. Wallimann, H. P. Elsasser, K. P. Wittern, H. Wenck, F. Stab, T. Blatt, The creatine kinase system in human skin: Protective effects of creatine against oxidative and UV damage in vitro and in vivo, J. Invest. Dermatol., 2005, 124, 443–452.
E. Pirev, C. Calles, P. Schroeder, H. Sies, K. D. Kroncke, Ultraviolet-A irradiation but not ultraviolet-B or infrared-A irradiation leads to a disturbed zinc homeostasis in cells, Free Radical Biol. Med., 2008, 45, 86–91.
S. Yamasaki, K. Sakata-Sogawa, A. Hasegawa, T. Suzuki, K. Kabu, E. Sato, T. Kurosaki, S. Yamashita, M. Tokunaga, K. Nishida, T. Hirano, Zinc is a novel intracellular second messenger, J. Cell Biol., 2007, 177, 637–645.
K. D. Kroncke, L. O. Klotz, Zinc fingers as biologic redox switches?, Antioxid. Redox Signaling, 2009, 11, 1015–1027.
A. Knebel, H. J. Rahmsdorf, A. Ullrich, P. Herrlich, Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents, EMBO J., 1996, 15, 5314–5325.
P. Larsson, K. Ollinger, I. Rosdahl, Ultraviolet (UV)A- and UVB-induced redox alterations and activation of nuclear factor-kappaB in human melanocytes-protective effects of alpha-tocopherol, Br. J. Dermatol., 2006, 155, 292–300.
S. Gonzalez, M. Fernandez-Lorente, Y. Gilaberte-Calzada, The latest on skin photoprotection, Clin. Dermatol., 2008, 26, 614–626.
S. Y. Kim, J. K. Tak, J. W. Park, Inactivation of NADP+-dependent isocitrate dehydrogenase by singlet oxygen derived from photoactivated Rose Bengal, Biochimie, 2004, 86, 501–507.
S. M. Lee, T. L. Huh, J. W. Park, Inactivation of NADP+-dependent isocitrate dehydrogenase by reactive oxygen species, Biochimie, 2001, 83, 1057–1065.
J. Luo, L. Li, Y. P. Zhang, D. R. Spitz, G. R. Buettner, L. W. Oberley, F. E. Domann, Inactivation of primary antioxidant enzymes in mouse keratinocytes by photodynamically generated singlet oxygen, Antioxid. Redox Signaling, 2006, 8, 1307–1314.
K. Punnonen, C. T. Jansen, A. Puntala, M. Ahotupa, Effects of in vitro UVA irradiation and PUVA treatment on membrane fatty acids and activities of antioxidant enzymes in human keratinocytes, J. Invest. Dermatol., 1991, 96, 255–259.
V. Maresca, E. Flori, S. Briganti, E. Camera, M. Cario-Andre, A. Taieb, M. Picardo, UVA-induced modification of catalase charge properties in the epidermis is correlated with the skin phototype, J. Invest. Dermatol., 2006, 126, 182–190.
S. R. Johar, U. M. Rawal, N. K. Jain, A. R. Vasavada, Sequential effects of ultraviolet radiation on the histomorphology, cell density and antioxidative status of the lens epithelium–an in vivo study, Photochem. Photobiol., 2003, 78, 306–311.
C. R. Picot, M. Moreau, M. Juan, E. Noblesse, C. Nizard, I. Petropoulos, B. Friguet, Impairment of methionine sulfoxide reductase during UV irradiation and photoaging, Exp. Gerontol., 2007, 42, 859–863.
M. T. Leccia, M. Yaar, N. Allen, M. Gleason, B. A. Gilchrest, Solar simulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts, Exp. Dermatol., 2001, 10, 272–279.
S. Ma, R. M. Caprioli, K. E. Hill, R. F. Burk, Loss of selenium from selenoproteins: Conversion of selenocysteine to dehydroalanine in vitro, J. Am. Soc. Mass Spectrom., 2003, 14, 593–600.
H. T. Le, A. F. Chaffotte, E. Demey-Thomas, J. Vinh, B. Friguet, J. Mary, Impact of hydrogen peroxide on the activity, structure, and conformational stability of the oxidized protein repair enzyme methionine sulfoxide reductase A, J. Mol. Biol., 2009, 393, 58–66.
F. M. Low, M. B. Hampton, A. V. Peskin, C. C. Winterbourn, Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte, Blood, 2007, 109, 2611–2617.
A. V. Peskin, F. M. Low, L. N. Paton, G. J. Maghzal, M. B. Hampton, C. C. Winterbourn, The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents, J. Biol. Chem., 2006, 282, 11885–11892.
G. Snider, L. Grout, E. L. Ruggles, R. J. Hondal, Methaneseleninic acid is a substrate for truncated mammalian thioredoxin reductase: Implications for the catalytic mechanism and redox signaling, Biochemistry, 2010, 49, 10329–10338.
S. R. Lee, S. Bar-Noy, J. Kwon, R. L. Levine, T. C. Stadtman, S. G. Rhee, Mammalian thioredoxin reductase: Oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2521–2526.
S. G. Rhee, C. S. Cho, Blot-based detection of dehydroalanine-containing glutathione peroxidase with the use of biotin-conjugated cysteamine, Methods Enzymol., 2010, 474, 23–34.
A. Bindoli, J. M. Fukuto, H. J. Forman, Thiol chemistry in peroxidase catalysis and redox signaling, Antioxid. Redox Signaling, 2008, 10, 1549–1564.
G. F. Vile, R. M. Tyrrell, UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen, Free Radical Biol. Med., 1995, 18, 721–730.
E. Kvam, V. Hejmadi, S. Ryter, C. Pourzand, R. M. Tyrrell, Heme oxygenase activity causes transient hypersensitivity to oxidative ultraviolet A radiation that depends on release of iron from heme, Free Radical Biol. Med., 2000, 28, 1191–1196.
S. M. Keyse, R. M. Tyrrell, Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 99–103.
C. Pourzand, R. D. Watkin, J. E. Brown, R. M. Tyrrell, Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 6751–6756.
G. Cairo, E. Castrusini, G. Minotti, A. Bernelli-Zazzera, Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity: A protective stratagem against oxidative injury, FASEB J., 1996, 10, 1326–1335.
O. Reelfs, I. M. Eggleston, C. Pourzand, Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrugs, Curr. Drug Metab., 2010, 11, 242–249.
A. Valencia, I. E. Kochevar, Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes, J. Invest. Dermatol., 2007, 128, 214–222.
M. Schauen, H. T. Hornig-Do, S. Schomberg, G. Herrmann, R. J. Wiesner, Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death, Free Radical Biol. Med., 2007, 42, 499–509.
B. Catalgol, I. Ziaja, N. Breusing, L. O. Klotz, J. Krutmann, T. Grune, Protein oxidation and proteasome inhibition during UVA irradiation, Free Radical Res., 2008, 42, S33.
A. L. Bulteau, M. Moreau, C. Nizard, B. Friguet, Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes, Free Radical Biol. Med., 2002, 32, 1157–1170.
C. S. Sander, H. Chang, S. Salzmann, C. S. Muller, S. Ekanayake-Mudiyanselage, P. Elsner, J. J. Thiele, Photoaging is associated with protein oxidation in human skin in vivo, J. Invest. Dermatol., 2002, 118, 618–625.
R. Haywood, C. Andrady, N. Kassouf, N. Sheppard, Intensity-dependent direct solar radiation- and UVA-induced radical damage to human skin and DNA, lipids and proteins, Photochem. Photobiol., 2011, 87, 117–130.
F. Kriegenburg, E. G. Poulsen, A. Koch, E. Kruger, R. Hartmann-Petersen, Redox control of the ubiquitin-proteasome system: From molecular mechanisms to functional significance, Antioxid. Redox Signal., 2011 10.1089/ars.2010.3590.
B. Catalgol, I. Ziaja, N. Breusing, T. Jung, A. Hohn, B. Alpertunga, P. Schroeder, N. Chondrogianni, E. S. Gonos, I. Petropoulos, B. Friguet, L. O. Klotz, J. Krutmann, T. Grune, The proteasome is an integral part of solar ultraviolet A radiation-induced gene expression, J. Biol. Chem., 2009, 284, 30076–30086.
T. Reinheckel, N. Sitte, O. Ullrich, U. Kuckelkorn, K. J. Davies, T. Grune, Comparative resistance of the 20S and 26S proteasome to oxidative stress, Biochem. J., 1998, 335, 637–642.
U. T. Brunk, A. Terman, Lipofuscin: Mechanisms of age-related accumulation and influence on cell function, Free Radical Biol. Med., 2002, 33, 611–619.
T. Grune, T. Jung, K. Merker, K. J. Davies, Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease, Int. J. Biochem. Cell Biol., 2004, 36, 2519–2530.
S. Davies, M. H. Elliott, E. Floor, T. G. Truscott, M. Zareba, T. Sarna, F. A. Shamsi, M. E. Boulton, Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells, Free Radical Biol. Med., 2001, 31, 256–265.
U. T. Brunk, H. Dalen, K. Roberg, H. B. Hellquist, Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts, Free Radical Biol. Med., 1997, 23, 616–626.
F. Y. Wan, L. Yang, Y. G. Zhong, W. Zhu, Y. N. Wang, G. J. Zhang, Enhancement of lysosomal osmotic sensitivity induced by the photooxidation of membrane thiol groups, Photochem. Photobiol., 2002, 75, 134–139.
F. Y. Wan, G. J. Zhang, Enhancement of lysosomal proton permeability induced by photooxidation of membrane thiol groups, Arch. Biochem. Biophys., 2002, 402, 268–274.
G. T. Wondrak, M. J. Roberts, D. Cervantes-Laurean, M. K. Jacobson, E. L. Jacobson, Proteins of the extracellular matrix are sensitizers of photo-oxidative stress in human skin cells, J. Invest. Dermatol., 2003, 121, 578–586.
S. Kar, S. Subbaram, P. M. Carrico, J. A. Melendez, Redox-control of matrix metalloproteinase-1: A critical link between free radicals, matrix remodeling and degenerative disease, Respir. Physiol. Neurobiol., 2010, 174, 299–306.
S. Koch, C. M. Volkmar, V. Kolb-Bachofen, H. G. Korth, M. Kirsch, A. H. Horn, H. Sticht, N. Pallua, C. V. Suschek, A new redox-dependent mechanism of MMP-1 activity control comprising reduced low-molecular-weight thiols and oxidizing radicals, J. Mol. Med., 2008, 87, 261–272.
A. Van Laethem, S. Claerhout, M. Garmyn, P. Agostinis, The sunburn cell: Regulation of death and survival of the keratinocyte, Int. J. Biochem. Cell Biol., 2005, 37, 1547–1553.
J. M. Sheehan, A. R. Young, The sunburn cell revisited: An update on mechanistic aspects, Photochem. Photobiol. Sci., 2002, 1, 365–377.
S. W. Ryter, H. P. Kim, A. Hoetzel, J. W. Park, K. Nakahira, X. Wang, A. M. Choi, Mechanisms of cell death in oxidative stress, Antioxid. Redox Signaling, 2007, 9, 49–89.
S. Zhuang, I. E. Kochevar, Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways, Photochem. Photobiol., 2003, 78, 61–67.
D. Berg, M. Lehne, N. Muller, D. Siegmund, S. Munkel, W. Sebald, K. Pfizenmaier, H. Wajant, Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95l, Cell Death Differ., 2007, 14, 2021–2034.
M. B. Hampton, I. Stamenkovic, C. C. Winterbourn, Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide, FEBS Lett., 2002, 517, 229–232.
D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, J. Fujii, Inactivation of cysteine and serine proteases by singlet oxygen, Arch. Biochem. Biophys., 2007, 461, 151–158.
R. Gniadecki, T. Thorn, J. Vicanova, A. Petersen, H. C. Wulf, Role of mitochondria in ultraviolet-induced oxidative stress, J. Cell. Biochem., 2001, 80, 216–222.
J. H. Rabe, A. J. Mamelak, P. J. S. McElgunn, W. L. Morison, D. N. Sauder, Photoaging: Mechanisms and repair, J. Am. Acad. Dermatol., 2006, 55, 1–19.
M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol., B, 2001, 63, 41–51.
G. T. Wondrak, Let the sun shine in: Mechanisms and potential for therapeutics in skin photodamage, Curr. Opin. Invest. Drugs, 2007, 8, 390–400.
G. J. Smith, Photodegradation of keratin and other structural proteins, J. Photochem. Photobiol., B, 1995, 27, 187–198.
H. S. Black, F. R. deGruijl, P. D. Forbes, J. E. Cleaver, H. N. Ananthaswamy, E. C. deFabo, S. E. Ullrich, R. M. Tyrrell, Photocarcinogenesis: An overview, J. Photochem. Photobiol., B, 1997, 40, 29–47.
E. Kvam, R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.
D. L. Narayanan, R. N. Saladi, J. L. Fox, Ultraviolet radiation and skin cancer, Int. J. Dermatol., 2010, 49, 978–986.
J. E. Roberts, Hazards of sunlight exposure to the eye, in Sun protection in man, ed. P. U. Giacomoni, Elsevier, Amsterdam, 2001, pp. 155–174.
D. N. Hu, J. D. Simon, T. Sarna, Role of ocular melanin in ophthalmic physiology and pathology, Photochem. Photobiol., 2008, 84, 639–644.
B. Rozanowski, J. Cuenco, S. Davies, F. A. Shamsi, A. Zadlo, P. Dayhaw-Barker, M. Rozanowska, T. Sarna, M. E. Boulton, The phototoxicity of aged human retinal melanosomes, Photochem. Photobiol., 2008, 84, 650–657.
O. Takikawa, T. Littlejohn, R. J. W. Truscott, Indoleamine 2.3-dioxygenase in the human lens, the first enzyme in the synthesis of UV filters, Exp. Eye Res., 2001, 72, 271–277.
J. A. Aquilina, R. J. Truscott, Cysteine is the initial site of modification of a-crystallin by kynurenine, Biochem. Biophys. Res. Commun., 2000, 276, 216–223.
B. Garner, D. C. Shaw, R. A. Lindner, J. A. Carver, R. J. Truscott, Non-oxidative modification of lens crystallins by kynurenine: A novel post-translational protein modification with possible relevance to ageing and cataract, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2000, 1476, 265–278.
J. A. Aquilina, R. J. W. Truscott, Identifying sites of attachment of UV filters to proteins in older human lenses, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2002, 1596, 6–15.
D. Balasubramanian, Photodynamics of cataract: An update on endogenous chromophores and antioxidants, Photochem. Photobiol., 2005, 81, 498–501.
A. Korlimbinis, P. G. Hains, R. J. Truscott, J. A. Aquilina, 3-hydroxykynurenine oxidizes alpha-crystallin: Potential role in cataractogenesis, Biochemistry, 2006, 45, 1852–1860.
B. J. Ortwerth, J. Bhattacharyya, E. Shipova, Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light, Invest. Ophthalmol. Visual Sci., 2009, 50, 3311–3319.
T. D. Mody, J. L. Sessler, Texaphyrins: A new approach to drug development, J. Porphyrins Phthalocyanines, 2001, 5, 134–142.
T. S. Johnson, A. C. O’Neill, P. M. Motarjem, C. Amann, T. Nguyen, M. A. Randolph, J. M. Winograd, I. E. Kochevar, R. W. Redmond, Photochemical tissue bonding: A promising technique for peripheral nerve repair, J. Surg. Res., 2007, 143, 224–229.
M. Yao, A. Yaroslavsky, F. P. Henry, R. W. Redmond, I. E. Kochevar, Phototoxicity is not associated with photochemical tissue bonding of skin, Lasers Surg. Med., 2010, 42, 123–131.
R. A. Franco, J. R. Dowdall, K. Bujold, C. Amann, W. Faquin, R. W. Redmond, I. E. Kochevar, Photochemical repair of vocal fold microflap defects, Laryngoscope, 2011, 121, 1244–1251.
E. Choe, D. B. Min, Chemistry and reactions of reactive oxygen species in foods, Crit. Rev. Food Sci. Nutr., 2006, 46, 1–22.
B. H. Ostdal, M. R. Weisbjerg, L. H. Skibsted, J. H. Nielsen, Protection against photooxidation of milk by high urate content, Milchwissenschaft-Milk Sci. Internat., 2008, 63, 119–122.
D. Scheidegger, R. P. Pecora, P. M. Radici, S. C. Kivatinitz, Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure, J. Dairy Sci., 2010, 93, 5101–5109.
M. N. Lund, M. Heinonen, C. P. Baron, M. Estevez, Protein oxidation in muscle foods: A review, Mol. Nutr. Food Res., 2011, 55, 83–95.
J. M. Dyer, S. D. Bringans, W. G. Bryson, Determination of photo-oxidation products within photoyellowed bleached wool proteins, Photochem. Photobiol., 2006, 82, 551–557.
J. M. Dyer, J. E. Plowman, G. L. Krsinic, S. Deb-Choudhury, H. Koehn, K. R. Millington, S. Clerens, Proteomic evaluation and location of UVB-induced photo-oxidation in wool, J. Photochem. Photobiol., B, 2010, 98, 118–127.