Phosphorylation regulates interaction of 210-kDa myosin light chain kinase N-terminal domain with actin cytoskeleton
Tóm tắt
High molecular weight myosin light chain kinase (MLCK210) is a multifunctional protein involved in myosin II activation and integration of cytoskeletal components in cells. MLCK210 possesses actin-binding regions both in the central part of the molecule and in its N-terminal tail domain. In HeLa cells, mitotic protein kinase Aurora B was suggested to phosphorylate MLCK210 N-terminal tail at serine residues (Dulyaninova, N. G., and Bresnick, A. R. (2004) Exp. Cell Res., 299, 303–314), but the functional significance of the phosphorylation was not established. We report here that in vitro, the N-terminal actin-binding domain of MLCK210 is located within residues 27-157 (N27-157, avian MLCK210 sequence) and is phosphorylated by cAMP-dependent protein kinase (PKA) and Aurora B at serine residues 140/149 leading to a decrease in N27-157 binding to actin. The same residues are phosphorylated in a PKA-dependent manner in transfected HeLa cells. Further, in transfected cells, phosphomimetic mutants of N27-157 showed reduced association with the detergent-stable cytoskeleton, whereas in vitro, the single S149D mutation reduced N27-157 association with F-actin to a similar extent as that achieved by N27-157 phosphorylation. Altogether, our results indicate that phosphorylation of MLCK210 at distinct serine residues, mainly at S149, attenuates the interaction of MLCK210 N-terminus with the actin cytoskeleton and might serve to regulate MLCK210 microfilament cross-linking activity in cells.
Tài liệu tham khảo
Watterson, D. M., Collinge, M., Lukas, T. J., Van Eldik, L. J., Birukov, K. G., Stepanova, O. V., and Shirinsky, V. P. (1995) Multiple gene products are produced from a novel protein kinase transcription region, FEBS Lett., 373, 217–220.
Birukov, K. G., Schavocky, J. P., Shirinsky, V. P., Chibalina, M. V., Van Eldik, L. J., and Watterson, D. M. (1998) Organization of the genetic locus for chicken myosin light chain kinase is complex: multiple proteins are encoded and exhibit differential expression and localization, J. Cell. Biochem., 70, 402–413.
Clayburgh, D. R., Rosen, S., Witkowski, E. D., Wang, F., Blair, S., Dudek, S., Garcia, J. G., Alverdy, J. C., and Turner, J. R. (2004) A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability, J. Biol. Chem., 279, 55506–55513.
Gallagher, P. J., Garcia, J. G., and Herring, B. P. (1995) Expression of a novel myosin light chain kinase in embry-onic tissues and cultured cells, J. Biol. Chem., 270, 29090–29095.
Garcia, J. G., Lazar, V., Gilbert-McClain, L. I., Gallagher, P. J., and Verin, A. D. (1997) Myosin light chain kinase in endothelium: molecular cloning and regulation, Am. J. Respir. Cell Mol. Biol., 16, 489–494.
Xu, J., Gao, X. P., Ramchandran, R., Zhao, Y. Y., Vogel, S. M., and Malik, A. B. (2008) Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating beta2 integrins, Nat. Immunol., 9, 880–886.
Shirinsky, V. P., Vorotnikov, A. V., Birukov, K. G., Nanaev, A. K., Collinge, M., Lukas, T. J., Sellers, J. R., and Watterson, D. M. (1993) A kinase-related protein stabilizes unphosphorylated smooth muscle myosin minifilaments in the presence of ATP, J. Biol. Chem., 268, 16578–16583.
Kudryashov, D. S., Chibalina, M. V., Birukov, K. G., Lukas, T. J., Sellers, J. R., Van Eldik, L. J., Watterson, D. M., and Shirinsky, V. P. (1999) Unique sequence of a high molecular weight myosin light chain kinase is involved in interaction with actin cytoskeleton, FEBS Lett., 463, 67–71.
Kudryashov, D. S., Stepanova, O. V., Vilitkevich, E. L., Nikonenko, T. A., Nadezhdina, E. S., Shanina, N. A., Lukas, T. J., Van Eldik, L. J., Watterson, D. M., and Shirinsky, V. P. (2004) Myosin light chain kinase (210 kDa) is a potential cytoskeleton integrator through its unique N-terminal domain, Exp. Cell Res., 298, 407–417.
Smith, L., Su, X., Lin, P., Zhi, G., and Stull, J. T. (1999) Identification of a novel actin binding motif in smooth muscle myosin light chain kinase, J. Biol. Chem., 274, 29433–29438.
Vilitkevich, E. L., Kudriashev, D. S., Stepanova, O. V., and Shirinsky, V. P. (2004) A new actin-binding area of the myosin light chains’ high-molecular kinase, Ross. Fiziol. Zh. im. I. M. Sechenov., 90, 577–585.
Birukov, K. G., Csortos, C., Marzilli, L., Dudek, S., Ma, S. F., Bresnick, A. R., Verin, A. D., Cotter, R. J., and Garcia, J. G. (2001) Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60(Src), J. Biol. Chem., 276, 8567–8573.
Dudek, S. M., Birukov, K. G., Zhan, X., and Garcia, J. G. (2002) Novel interaction of cortactin with endothelial cell myosin light chain kinase, Biochem. Biophys. Res. Commun., 298, 511–519.
Shin, D. H., Chun, Y. S., Lee, K. H., Shin, H. W., and Park, J. W. (2009) Arrest defective-1 controls tumor cell behavior by acetylating myosin light chain kinase, PLoS One, 4, e7451.
Takizawa, N., Ikebe, R., Ikebe, M., and Luna, E. J. (2007) Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery, J. Cell Sci., 120, 3792–3803.
Wadgaonkar, R., Dudek, S. M., Zaiman, A. L., Linz-McGillem, L., Verin, A. D., Nurmukhambetova, S., Romer, L. H., and Garcia, J. G. (2005) Intracellular inter-action of myosin light chain kinase with macrophage migration inhibition factor (MIF) in endothelium, J. Cell. Biochem., 95, 849–858.
Dulyaninova, N. G., and Bresnick, A. R. (2004) The long myosin light chain kinase is differentially phosphorylated during interphase and mitosis, Exp. Cell Res., 299, 303–314.
Huttlin, E. L., Jedrychowski, M. P., Elias, J. E., Goswami, T., Rad, R., Beausoleil, S. A., Villen, J., Haas, W., Sowa, M. E., and Gygi, S. P. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression, Cel., 143, 1174–1189.
Goswami, T., Li, X., Smith, A. M., Luderowski, E. M., Vincent, J. J., Rush, J., and Ballif, B. A. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain, Proteomic., 12, 2185–2189.
Spudich, J. A., and Watt, S. (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin troponin complex with actin and the proteolytic fragments of myosin, J. Biol. Chem., 246, 4866–4871.
Laemmli, U. K. (1970) Cleavage of structural proteins dur-ing the assembly of the head of bacteriophage T4, Natur., 227, 680–685.
Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applica-tions, Proc. Natl. Acad. Sci. US., 76, 4350–4354.
Lukas, T. J., Wang, A. L., Yuan, M., and Neufeld, A. H. (2009) Early cellular signaling responses to axonal injury, Cell Commun. Signal., 7, 5.
Yeung, Y. G., and Stanley, E. R. (2009) A solution for strip-ping antibodies from polyvinylidene fluoride immunoblots for multiple reprobing, Anal. Biochem., 389, 89–91.
Mitchison, T. J. (1992) Actin based motility on retraction fibers in mitotic PtK2 cells, Cell Motil. Cytoskeleto., 22, 135–151.
Yang, C. X., Chen, H. Q., Chen, C., Yu, W. P., Zhang, W. C., Peng, Y. J., He, W. Q., Wei, D. M., Gao, X., and Zhu, M. S. (2006) Microfilament-binding properties of N-ter-minal extension of the isoform of smooth muscle long myosin light chain kinase, Cell Res., 16, 367–376.
Smith, L., Parizi-Robinson, M., Zhu, M. S., Zhi, G., Fukui, R., Kamm, K. E., and Stull, J. T. (2002) Properties of long myosin light chain kinase binding to F-actin in vitro and in vivo, J. Biol. Chem., 277, 35597–35604.
Poperechnaya, A., Varlamova, O., Lin, P. J., Stull, J. T., and Bresnick, A. R. (2000) Localization and activity of myosin light chain kinase isoforms during the cell cycle, J. Cell Biol., 151, 697–708.
Stossel, T. P., Condeelis, J., Cooley, L., Hartwig, J. H., Noegel, A., Schleicher, M., and Shapiro, S. S. (2001) Filamins as integrators of cell mechanics and signaling, Nat. Rev. Mol. Cell Biol., 2, 138–145.