Phosphorylated CIS suppresses the Epo or JAK2 V617F mutant-triggered cell proliferation through binding to EpoR
Tài liệu tham khảo
Miura, 1994, Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo, Blood, 84, 1501, 10.1182/blood.V84.5.1501.1501
Parganas, 1998, Jak2 is essential for signaling through a variety of cytokine receptors, Cell, 93, 385, 10.1016/S0092-8674(00)81167-8
Ihle, 2007, Jak2: normal function and role in hematopoietic disorders, Curr. Opin. Genet. Dev., 17, 8, 10.1016/j.gde.2006.12.009
Funakoshi-Tago, 2009, The acute lymphoblastic leukemia-associated JAK2 L611S mutant induces tumorigenesis in nude mice, J. Biol. Chem., 284, 12680, 10.1074/jbc.M808879200
James, 2005, A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, 434, 1144, 10.1038/nature03546
Kralovics, 2005, A gain-of-function mutation of JAK2 in myeloproliferative disorders, N. Engl. J. Med., 352, 1779, 10.1056/NEJMoa051113
Levine, 2005, Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis, Cancer Cell, 7, 387, 10.1016/j.ccr.2005.03.023
Funakoshi-Tago, 2008, Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity, Mol. Cell. Biol., 28, 1792, 10.1128/MCB.01447-07
Abe, 2009, The polycythemia vera-associated Jak2 V617F mutant induces tumorigenesis in nude mice, Int. Immunopharmacol., 9, 870, 10.1016/j.intimp.2009.03.011
Klingmüller, 1996, Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5, Proc. Natl. Acad. Sci. U. S. A., 93, 8324, 10.1073/pnas.93.16.8324
Penta, 1995, Erythropoietin induces the tyrosine phosphorylation, nuclear translocation, and DNA binding of STAT1 and STAT5 in erythroid cells, J. Biol. Chem., 270, 31282, 10.1074/jbc.270.52.31282
Kashii, 2000, A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction, Blood, 96, 941, 10.1182/blood.V96.3.941
Nosaka, 1999, CrkL mediates Ras-dependent activation of the Raf/ERK pathway through the guanine nucleotide exchange factor C3G in hematopoietic cells stimulated with erythropoietin or interleukin-3, J. Biol. Chem., 274, 30154, 10.1074/jbc.274.42.30154
Funakoshi-Tago, 2010, STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant, J. Biol. Chem., 285, 5296, 10.1074/jbc.M109.040733
Funakoshi-Tago, 2013, Critical roles of Myc-ODC axis in the cellular transformation induced by myeloproliferative neoplasm-associated JAK2 V617F mutant, PLoS One, 8, 10.1371/journal.pone.0052844
Funakoshi-Tago, 2012, Fullerene derivative prevents cellular transformation induced by JAK2 V617F mutant through inhibiting c-Jun N-terminal kinase pathway, Cell. Signal., 24, 2024, 10.1016/j.cellsig.2012.06.014
Sumi, 2011, Aurora kinase A critically contributes to the resistance to anti-cancer drug cisplatin in JAK2 V617F mutant-induced transformed cells, FEBS Lett., 585, 1884, 10.1016/j.febslet.2011.04.068
Ueda, 2013, Critical role of FANCC in JAK2 V617F mutant-induced resistance to DNA cross-linking drugs, Cell. Signal., 25, 2115, 10.1016/j.cellsig.2013.07.003
Kamishimoto, 2011, Akt activation through the phosphorylation of erythropoietin receptor at tyrosine 479 is required for myeloproliferative disorder-associated JAK2 V617F mutant-induced cellular transformation, Cell. Signal., 23, 849, 10.1016/j.cellsig.2011.01.009
Croker, 2008, SOCS regulation of the JAK/STAT signalling pathway, Semin. Cell Dev. Biol., 19, 414, 10.1016/j.semcdb.2008.07.010
Yoshimura, 2007, SOCS proteins, cytokine signalling and immune regulation, Nat. Rev. Immunol., 7, 454, 10.1038/nri2093
Haan, 2003, Tyrosine phosphorylation disrupts elongin interaction and accelerates SOCS3 degradation, J. Biol. Chem., 278, 31972, 10.1074/jbc.M303170200
Hanada, 2001, A mutant form of JAB/SOCS1 augments the cytokine-induced JAK/STAT pathway by accelerating degradation of wild-type JAB/CIS family proteins through the SOCS-box, J. Biol. Chem., 276, 40746, 10.1074/jbc.M106139200
Zhang, 1999, The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation, Proc. Natl. Acad. Sci. U. S. A., 96, 2071, 10.1073/pnas.96.5.2071
Kamura, 1998, The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families, Genes Dev., 12, 3872, 10.1101/gad.12.24.3872
Haan, 2009, SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling, Oncogene, 28, 3069, 10.1038/onc.2009.155
Quentmeier, 2008, SOCS2: inhibitor of JAK2V617F-mediated signal transduction, Leukemia, 22, 2169, 10.1038/leu.2008.226
Ketteler, 2003, The cytokine-inducible Scr homology domain-containing protein negatively regulates signaling by promoting apoptosis in erythroid progenitor cells, J. Biol. Chem., 278, 2654, 10.1074/jbc.M211236200
Onishi, 1998, Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation, Mol. Cell. Biol., 18, 3871, 10.1128/MCB.18.7.3871
Quintás-Cardama, 2010, Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms, Blood, 115, 3109, 10.1182/blood-2009-04-214957
Quentmeier, 2006, JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders, Leukemia, 20, 471, 10.1038/sj.leu.2404081
Meyer, 2015, CHZ868, a type II JAK2 inhibitor, reverses type I JAK inhibitor persistence and demonstrates efficacy in myeloproliferative neoplasms, Cancer Cell, 28, 15, 10.1016/j.ccell.2015.06.006
Hookham, 2007, The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3, Blood, 109, 4924, 10.1182/blood-2006-08-039735
Yasukawa, 1999, The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop, EMBO J., 18, 1309, 10.1093/emboj/18.5.1309
Chen, 2002, Pim serine/threonine kinases regulate the stability of Socs-1 protein, Proc. Natl. Acad. Sci. U. S. A., 99, 2175, 10.1073/pnas.042035699
Lu, 2005, Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation, Proc. Natl. Acad. Sci. U. S. A., 102, 18962, 10.1073/pnas.0509714102
Sangkhae, 2014, The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm, Blood, 124, 3956, 10.1182/blood-2014-07-587238
Matsumoto, 1997, CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation, Blood, 89, 3148, 10.1182/blood.V89.9.3148
Kile, 2002, The SOCS box: a tale of destruction and degradation, Trends Biochem. Sci., 27, 235, 10.1016/S0968-0004(02)02085-6
Martinez-Forero, 2009, Lysine 63 polyubiquitination in immunotherapy and in cancer-promoting inflammation, Clin. Cancer Res., 15, 6751, 10.1158/1078-0432.CCR-09-1225
Tokunaga, 2012, LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses, Microbes Infect., 14, 563, 10.1016/j.micinf.2012.01.011
Zhou, 2004, Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO, Nature, 427, 167, 10.1038/nature02273
Zhang, 2016, FBXW7 facilitates nonhomologous end-joining via K63-linked polyubiquitylation of XRCC4, Mol. Cell, 61, 419, 10.1016/j.molcel.2015.12.010