Phosphorylated CIS suppresses the Epo or JAK2 V617F mutant-triggered cell proliferation through binding to EpoR

Cellular Signalling - Tập 31 - Trang 41-57 - 2017
Megumi Funakoshi-Tago1, Takuro Moriwaki1, Fumihito Ueda1, Hiroomi Tamura1, Tadashi Kasahara1,2, Kenji Tago3
1Department of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
2Iternational University of Health and Welfare, Graduate School, 1-3-3 Minamiaoyama, Minato-ku, Tokyo, 107-0062, Japan
3Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan

Tài liệu tham khảo

Miura, 1994, Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo, Blood, 84, 1501, 10.1182/blood.V84.5.1501.1501 Parganas, 1998, Jak2 is essential for signaling through a variety of cytokine receptors, Cell, 93, 385, 10.1016/S0092-8674(00)81167-8 Ihle, 2007, Jak2: normal function and role in hematopoietic disorders, Curr. Opin. Genet. Dev., 17, 8, 10.1016/j.gde.2006.12.009 Funakoshi-Tago, 2009, The acute lymphoblastic leukemia-associated JAK2 L611S mutant induces tumorigenesis in nude mice, J. Biol. Chem., 284, 12680, 10.1074/jbc.M808879200 James, 2005, A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, 434, 1144, 10.1038/nature03546 Kralovics, 2005, A gain-of-function mutation of JAK2 in myeloproliferative disorders, N. Engl. J. Med., 352, 1779, 10.1056/NEJMoa051113 Levine, 2005, Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis, Cancer Cell, 7, 387, 10.1016/j.ccr.2005.03.023 Funakoshi-Tago, 2008, Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity, Mol. Cell. Biol., 28, 1792, 10.1128/MCB.01447-07 Abe, 2009, The polycythemia vera-associated Jak2 V617F mutant induces tumorigenesis in nude mice, Int. Immunopharmacol., 9, 870, 10.1016/j.intimp.2009.03.011 Klingmüller, 1996, Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5, Proc. Natl. Acad. Sci. U. S. A., 93, 8324, 10.1073/pnas.93.16.8324 Penta, 1995, Erythropoietin induces the tyrosine phosphorylation, nuclear translocation, and DNA binding of STAT1 and STAT5 in erythroid cells, J. Biol. Chem., 270, 31282, 10.1074/jbc.270.52.31282 Kashii, 2000, A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction, Blood, 96, 941, 10.1182/blood.V96.3.941 Nosaka, 1999, CrkL mediates Ras-dependent activation of the Raf/ERK pathway through the guanine nucleotide exchange factor C3G in hematopoietic cells stimulated with erythropoietin or interleukin-3, J. Biol. Chem., 274, 30154, 10.1074/jbc.274.42.30154 Funakoshi-Tago, 2010, STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant, J. Biol. Chem., 285, 5296, 10.1074/jbc.M109.040733 Funakoshi-Tago, 2013, Critical roles of Myc-ODC axis in the cellular transformation induced by myeloproliferative neoplasm-associated JAK2 V617F mutant, PLoS One, 8, 10.1371/journal.pone.0052844 Funakoshi-Tago, 2012, Fullerene derivative prevents cellular transformation induced by JAK2 V617F mutant through inhibiting c-Jun N-terminal kinase pathway, Cell. Signal., 24, 2024, 10.1016/j.cellsig.2012.06.014 Sumi, 2011, Aurora kinase A critically contributes to the resistance to anti-cancer drug cisplatin in JAK2 V617F mutant-induced transformed cells, FEBS Lett., 585, 1884, 10.1016/j.febslet.2011.04.068 Ueda, 2013, Critical role of FANCC in JAK2 V617F mutant-induced resistance to DNA cross-linking drugs, Cell. Signal., 25, 2115, 10.1016/j.cellsig.2013.07.003 Kamishimoto, 2011, Akt activation through the phosphorylation of erythropoietin receptor at tyrosine 479 is required for myeloproliferative disorder-associated JAK2 V617F mutant-induced cellular transformation, Cell. Signal., 23, 849, 10.1016/j.cellsig.2011.01.009 Croker, 2008, SOCS regulation of the JAK/STAT signalling pathway, Semin. Cell Dev. Biol., 19, 414, 10.1016/j.semcdb.2008.07.010 Yoshimura, 2007, SOCS proteins, cytokine signalling and immune regulation, Nat. Rev. Immunol., 7, 454, 10.1038/nri2093 Haan, 2003, Tyrosine phosphorylation disrupts elongin interaction and accelerates SOCS3 degradation, J. Biol. Chem., 278, 31972, 10.1074/jbc.M303170200 Hanada, 2001, A mutant form of JAB/SOCS1 augments the cytokine-induced JAK/STAT pathway by accelerating degradation of wild-type JAB/CIS family proteins through the SOCS-box, J. Biol. Chem., 276, 40746, 10.1074/jbc.M106139200 Zhang, 1999, The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation, Proc. Natl. Acad. Sci. U. S. A., 96, 2071, 10.1073/pnas.96.5.2071 Kamura, 1998, The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families, Genes Dev., 12, 3872, 10.1101/gad.12.24.3872 Haan, 2009, SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling, Oncogene, 28, 3069, 10.1038/onc.2009.155 Quentmeier, 2008, SOCS2: inhibitor of JAK2V617F-mediated signal transduction, Leukemia, 22, 2169, 10.1038/leu.2008.226 Ketteler, 2003, The cytokine-inducible Scr homology domain-containing protein negatively regulates signaling by promoting apoptosis in erythroid progenitor cells, J. Biol. Chem., 278, 2654, 10.1074/jbc.M211236200 Onishi, 1998, Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation, Mol. Cell. Biol., 18, 3871, 10.1128/MCB.18.7.3871 Quintás-Cardama, 2010, Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms, Blood, 115, 3109, 10.1182/blood-2009-04-214957 Quentmeier, 2006, JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders, Leukemia, 20, 471, 10.1038/sj.leu.2404081 Meyer, 2015, CHZ868, a type II JAK2 inhibitor, reverses type I JAK inhibitor persistence and demonstrates efficacy in myeloproliferative neoplasms, Cancer Cell, 28, 15, 10.1016/j.ccell.2015.06.006 Hookham, 2007, The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3, Blood, 109, 4924, 10.1182/blood-2006-08-039735 Yasukawa, 1999, The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop, EMBO J., 18, 1309, 10.1093/emboj/18.5.1309 Chen, 2002, Pim serine/threonine kinases regulate the stability of Socs-1 protein, Proc. Natl. Acad. Sci. U. S. A., 99, 2175, 10.1073/pnas.042035699 Lu, 2005, Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation, Proc. Natl. Acad. Sci. U. S. A., 102, 18962, 10.1073/pnas.0509714102 Sangkhae, 2014, The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm, Blood, 124, 3956, 10.1182/blood-2014-07-587238 Matsumoto, 1997, CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation, Blood, 89, 3148, 10.1182/blood.V89.9.3148 Kile, 2002, The SOCS box: a tale of destruction and degradation, Trends Biochem. Sci., 27, 235, 10.1016/S0968-0004(02)02085-6 Martinez-Forero, 2009, Lysine 63 polyubiquitination in immunotherapy and in cancer-promoting inflammation, Clin. Cancer Res., 15, 6751, 10.1158/1078-0432.CCR-09-1225 Tokunaga, 2012, LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses, Microbes Infect., 14, 563, 10.1016/j.micinf.2012.01.011 Zhou, 2004, Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO, Nature, 427, 167, 10.1038/nature02273 Zhang, 2016, FBXW7 facilitates nonhomologous end-joining via K63-linked polyubiquitylation of XRCC4, Mol. Cell, 61, 419, 10.1016/j.molcel.2015.12.010