Sự sẵn có của phốt pho và nấm arbuscular mycorrhizal giới hạn chu trình C trong đất và ảnh hưởng đến phản ứng của cây trồng dưới điều kiện CO2 cao

Springer Science and Business Media LLC - Tập 160 - Trang 69-87 - 2022
L. Castañeda-Gómez1,2, J. R. Powell1, E. Pendall1, Y. Carrillo1
1Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
2Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada

Tóm tắt

Sự phân hủy chất hữu cơ trong đất (SOM) và chu trình phốt pho (P) hữu cơ có thể giúp duy trì năng suất cây trồng dưới điều kiện CO2 cao (eCO2) và thiếu P. Nấm arbuscular mycorrhizal (AM) và vai trò của chúng trong việc thu nhận P và phân hủy SOM có thể trở nên quan trọng hơn trong các điều kiện này. Tuy nhiên, bằng chứng thực nghiệm về ảnh hưởng tương tác của nấm AM và sự sẵn có của P đối với chu trình carbon (C) trong đất dưới eCO2 còn hiếm hoi và các cơ chế tiềm năng điều khiển hiện tượng này vẫn chưa được hiểu rõ. Chúng tôi đã tiến hành một thí nghiệm trong chậu với đất và một loại cỏ từ hệ sinh thái thiếu P, nơi mà sinh khối cây trồng và chu trình C trong đất hầu như không phản ứng với eCO2. Chúng tôi đã điều chỉnh nấm AM, mức độ P và CO2 và đánh giá tác động của chúng đến chu trình C trong đất và sự phát triển của cây thông qua việc gán nhãn carbon-13 liên tục để phân lập và đo lường những thay đổi ngắn hạn trong tổng lượng và các phân đoạn SOM phát sinh CO2, carbon hữu cơ hòa tan (DOC) và khối lượng sinh khối vi sinh vật (MBC), như những thành phần liên quan của chu trình C trong đất. Sự gia tăng phân hủy SOM và sử dụng C vi sinh vật được giả thuyết sẽ hỗ trợ tăng trưởng cây trồng dưới eCO2 và thiếu P với nấm AM làm tăng cường hiệu ứng này. Tuy nhiên, chúng tôi không phát hiện thấy tác động đáng kể đồng thời của ba yếu tố thí nghiệm. Thay vào đó, chúng tôi quan sát thấy sinh khối rễ và sự hấp thụ dưỡng chất tăng lên với eCO2 và sự hiện diện của AM và lượng DOC và MBC phát sinh từ SOM giảm xuống với mức P thấp, càng giảm thêm khi có sự cấy giống AM. Tóm lại, những phát hiện của chúng tôi trong hệ thống mô hình cây trồng và đất này cho thấy, nấm AM có thể hỗ trợ tăng trưởng sinh khối rễ và hấp thụ dưỡng chất dưới eCO2 và bảo vệ nguồn SOM khỏi sự phân hủy ngay cả trong điều kiện thiếu P. Ngược lại với các báo cáo từ các hệ sinh thái bị giới hạn N, kết quả của chúng tôi cho phép chúng tôi kết luận rằng các chu trình sinh hóa carbon và phốt pho có thể không trở nên liên kết để duy trì hiệu ứng phân bón do eCO2 và vai trò của nấm AM bảo vệ nguồn SOM có khả năng bị ảnh hưởng bởi các tương tác cạnh tranh với cộng đồng saprotrophic về dưỡng chất.

Từ khóa

#sinh khối rễ #nấm arbuscular mycorrhizal #dư lượng hữu cơ trong đất #chu trình carbon #CO2 cao #phốt pho

Tài liệu tham khảo

Ainsworth EA, Long SP (2004) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2: Tansley review. New Phytol 165:351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x Brar GS, Tolleson EL (1975) The luxury uptake phenomenon for removal of phosphates from municipal wastewater. Water Res 9:71–77. https://doi.org/10.1016/0043-1354(75)90154-2 Brundett M (1995) Mycorrhizas for plantation forestry in Asia : proceedings of an international symposium and workshop, Kaiping, Guangdong Province, P.R. China, 7–11 November, 1994/editors: M. Brundett ... [et al.]. Australian Centre for International Agricultural Research, Canberra Bunn RA, Simpson DT, Bullington LS et al (2019) Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME J 13:1891–1898. https://doi.org/10.1038/s41396-019-0403-2 Buyer JS, Sasser M (2012) High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130. https://doi.org/10.1016/j.apsoil.2012.06.005 Canadell JG, Pitelka LF, Ingram JSI (1995) The effects of elevated [CO2] on plant-soil carbon below-ground: a summary and synthesis. Plant Soil 187:391–400. https://doi.org/10.1007/BF00017102 Carrillo Y, Dijkstra FA, Pendall E et al (2014) Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry. Biogeochemistry 117:229–240. https://doi.org/10.1007/s10533-014-9954-5 Carrillo Y, Dijkstra FA, LeCain D, Pendall E (2015) Mediation of soil C decomposition by arbuscular mycorrizhal fungi in grass rhizospheres under elevated CO2. Biogeochemistry. https://doi.org/10.1007/s10533-015-0159-3 Castañeda-Gómez L, Walker JKM, Powell JR et al (2020) Impacts of elevated carbon dioxide on carbon gains and losses from soil and associated microbes in a Eucalyptus woodland. Soil Biol Biochem 143:107734. https://doi.org/10.1016/j.soilbio.2020.107734 Castañeda-Gómez L, Powell JR, Ellsworth DS et al (2021) The influence of roots on mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a low-phosphorus Eucalyptus forest under elevated CO2. Funct Ecol. https://doi.org/10.1111/1365-2435.13832 Cavagnaro TR, Gleadow RM, Miller RE (2011) Plant nutrient acquisition and utilisation in a high carbon dioxide world. Funct Plant Biol 38:87–96. https://doi.org/10.1071/FP10124 Cheng W, Dijkstra FA (2007) Theoretical proof and empirical confirmation of a continuous labeling method using naturally 13 C-depleted carbon dioxide. J Integr Plant Biol 49:401–407 Cheng L, Booker FL, Tu C et al (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087. https://doi.org/10.1126/science.1224304 Clark CEF, Mitchell ML, Islam MR, Jacobs B (2014) Phosphorus content of the soil influences the growth and productivity of Themeda triandra Forssk. and Microlaena stipoides (Labill.) R.Br. Rangel J 36:233–237. https://doi.org/10.1071/RJ13108 Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503. https://doi.org/10.1890/05-0525 Conroy JP, Milham PJ, Barlow EWR (1992) Effect of nitrogen and phosphorus availability on the growth response of Eucalyptus grandis to high CO2. Plant Cell Environ 15:843–847. https://doi.org/10.1111/j.1365-3040.1992.tb02152.x Cotrufo MF, Gorissen A (1997) Elevated CO2enhances below-ground C allocation in three perennial grass species at different levels of N availability. New Phytol 137:421–431. https://doi.org/10.1046/j.1469-8137.1997.00839.x Cotton TA (2018) Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS Microbiol Ecol 94:fiy179. https://doi.org/10.1093/femsec/fiy179 Crous KY, Ósvaldsson A, Ellsworth DS (2015) Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant Soil 391:293–305. https://doi.org/10.1007/s11104-015-2426-4 De Graaff M-A, Groenigen K-JV, Six J et al (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x Delucia EH, Callaway RM, Thomas EM, Schlesinger WH (1997) Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Ann Bot 79:111–120. https://doi.org/10.1006/anbo.1996.0320 Deng Q, Hui D, Luo Y et al (2015) Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology 96:3354–3362. https://doi.org/10.1890/15-0217.1 Dieleman WIJ, Luyssaert S, Rey A et al (2010) Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis. Plant Cell Environ 33:2001–2011. https://doi.org/10.1111/j.1365-3040.2010.02201.x Dijkstra FA, Pendall E, Morgan JA et al (2012) Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol 196:807–815. https://doi.org/10.1111/j.1469-8137.2012.04349.x Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00216 Dong Y, Wang Z, Sun H et al (2018) The response patterns of arbuscular mycorrhizal and ectomycorrhizal symbionts under elevated CO2: a meta-analysis. Front Microbiol 9:1248. https://doi.org/10.3389/fmicb.2018.01248 Dong J, Hunt J, Delhaize E et al (2021) Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: a review. Sci Total Environ 754:142434. https://doi.org/10.1016/j.scitotenv.2020.142434 Drake JE, Gallet-Budynek A, Hofmockel KS et al (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357. https://doi.org/10.1111/j.1461-0248.2011.01593.x Drake JE, Macdonald CA, Tjoelker MG et al (2016) Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Glob Change Biol 22:380–390. https://doi.org/10.1111/gcb.13109 Ellsworth DS, Anderson IC, Crous KY et al (2017) Elevated CO2does not increase eucalypt forest productivity on a low-phosphorus soil. Nat Clim Change 7:279–282. https://doi.org/10.1038/nclimate3235 Fang X-M, Zhang X-L, Chen F-S et al (2019) Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest. Soil Biol Biochem 133:119–128. https://doi.org/10.1016/j.soilbio.2019.03.005 Feng J, Zhu B (2019) A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biol Biochem 135:38–47. https://doi.org/10.1016/j.soilbio.2019.04.008 Finzi AC, Sinsabaugh RL, Long TM, Osgood MP (2006) Microbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest. Ecosystems 9:215–226. https://doi.org/10.1007/s10021-005-0078-6 Finzi AC, Austin AT, Cleland EE et al (2011) Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front Ecol Environ 9:61–67. https://doi.org/10.1890/100001 Fox TR, Miller BW, Rubilar R et al (2011) Phosphorus nutrition of forest plantations: the role of inorganic and organic phosphorus. In: Bünemann E, Oberson A, Frossard E et al (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Berlin, Heidelberg, pp 317–338 Fox J, Weisberg S, Price B et al (2021) Car: companion to applied regression. Version 3.0-11. https://CRAN.R-project.org/package=car Fransson PMA, Johansson EM (2010) Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. FEMS Microbiol Ecol 71:186–196. https://doi.org/10.1111/j.1574-6941.2009.00795.x Freeman C, Fenner N, Ostle NJ et al (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198. https://doi.org/10.1038/nature02707 Frew A, Price JN, Oja J et al (2021) Impacts of elevated atmospheric CO2 on arbuscular mycorrhizal fungi and their role in moderating plant allometric partitioning. Mycorrhiza 31:423–430. https://doi.org/10.1007/s00572-021-01025-6 Frey SD (2019) Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst 50:237–259. https://doi.org/10.1146/annurev-ecolsys-110617-062331 Ghosal P, Chakraborty T (2012) Comparative solubility study of four phosphatic fertilizers in different solvents and the effect of soil. Resour Environ 2:175–179. https://doi.org/10.5923/j.re.20120204.07 Gifford RM, Barrett DJ, Lutze JL (2000) The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues. Plant Soil 224:1–14. https://doi.org/10.1023/A:1004790612630 Goll DS, Brovkin V, Parida BR et al (2012) Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9:3547–3569. https://doi.org/10.5194/bg-9-3547-2012 Hagedorn F, Blaser P, Siegwolf R (2002) Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon—clues from δ13C signature. Soil Biol Biochem 34:355–366. https://doi.org/10.1016/S0038-0717(01)00191-2 Hagedorn F, van Hees PAW, Handa IT, Hättenschwiler S (2008) Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Glob Biogeochem Cycles. https://doi.org/10.1029/2007GB003026 Hasegawa S, Macdonald CA, Power SA (2016) Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob Change Biol 22:1628–1643 Hasegawa S, Piñeiro J, Ochoa-Hueso R et al (2018) Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J Ecol. https://doi.org/10.1111/1365-2745.12943 Hill JO, Simpson RJ, Ryan MH, Chapman DF (2010) Root hair morphology and mycorrhizal colonisation of pasture species in response to phosphorus and nitrogen nutrition. Crop Pasture Sci 61:122. https://doi.org/10.1071/CP09217 Högy P, Keck M, Niehaus K et al (2010) Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain. J Cereal Sci 52:215–220. https://doi.org/10.1016/j.jcs.2010.05.009 Hoosbeek MR, Lukac M, van Dam D et al (2004) More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): cause of increased priming effect? Glob Biogeochem Cycles. https://doi.org/10.1029/2003GB002127 Hothorn T, Bretz F, Westfall P et al (2021) Multcomp: simultaneous inference in general parametric models. Version 1.4-17. https://CRAN.R-project.org/package=multcomp Hungate BA, Groenigen K-JV, Six J et al (2009) Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Change Biol 15:2020–2034. https://doi.org/10.1111/j.1365-2486.2009.01866.x Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–357. https://doi.org/10.1111/j.1469-8137.2009.03122.x Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles: phosphate transport in the AM symbiosis. Plant Cell Environ 30:310–322. https://doi.org/10.1111/j.1365-3040.2006.01617.x Jiang M, Caldararu S, Zhang H et al (2020) Low phosphorus supply constrains plant responses to elevated CO2: a meta-analysis. Glob Change Biol 26:5856–5873. https://doi.org/10.1111/gcb.15277 Jin J, Tang C, Sale P (2015) The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann Botany 116:987–999. https://doi.org/10.1093/aob/mcv088 Johnson AH, Frizano J, Vann DR (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135:487–499. https://doi.org/10.1007/s00442-002-1164-5 Joner EJ, van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:12 Keenan RJ, Reams GA, Achard F et al (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag 352:9–20. https://doi.org/10.1016/j.foreco.2015.06.014 Kelley AM, Fay PA, Polley HW et al (2011) Atmospheric CO2 and soil extracellular enzyme activity: a meta-analysis and CO2 gradient experiment. Ecosphere 2:art96. https://doi.org/10.1890/ES11-00117.1 Kowalchuk GA (2012) Bad news for soil carbon sequestration? Science 337:1049–1050. https://doi.org/10.1126/science.1227303 Lenth R, Singmann H, Love J et al (2020) Emmeans: estimated marginal means, aka least-squares means. Version 1.4.6. Available at https://CRAN.R-project.org/package=emmeans Liu Y, Chen J (2008) Phosphorus Cycle. In: Jørgensen SE, Fath BD (eds) Encyclopedia of Ecology. Academic Press, Oxford, pp 2715–2724 Liu Y, Zang H, Ge T et al (2018) Intensive fertilization (N, P, K, Ca, and S) decreases organic matter decomposition in paddy soil. Appl Soil Ecol 127:51–57. https://doi.org/10.1016/j.apsoil.2018.02.012 Loladze I (2002) Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol Evol 17:457–461. https://doi.org/10.1016/S0169-5347(02)02587-9 Loladze I (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife. https://doi.org/10.7554/eLife.02245 Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Glob Change Biol 9:838–848. https://doi.org/10.1046/j.1365-2486.2003.00582.x Maroco JP, Breia E, Faria T et al (2002) Effects of long-term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulation in Quercus suber L. Plant Cell Environ 25:105–113. https://doi.org/10.1046/j.0016-8025.2001.00800.x Matamala R, Schlesinger WH (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Glob Change Biol 6:967–979. https://doi.org/10.1046/j.1365-2486.2000.00374.x Mohan JE, Cowden CC, Baas P et al (2014) Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol 10:3–19. https://doi.org/10.1016/j.funeco.2014.01.005 Moorhead DL, Linkins AE (1997) Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant Soil 189:321–329. https://doi.org/10.1023/A:1004246720186 Mori T, Lu X, Aoyagi R, Mo J (2018) Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Funct Ecol 32:1145–1154. https://doi.org/10.1111/1365-2435.13043 Mullen MD (2005) Phosphorus in soils | biological interactions. In: Hillel D (ed) Encyclopedia of Soils in the Environment. Elsevier, Oxford, pp 210–216 Mullins GL, Sikora FJ, Williams JC (1995) Effect of water-soluble phosphorus on the effectiveness of triple superphosphate fertilizers. Soil Sci Soc Am J 59:256–260. https://doi.org/10.2136/sssaj1995.03615995005900010040x Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, Heidelberg, pp 215–243 Nie ZN, Zollinger RP, Jacobs JL (2009) Performance of 7 Australian native grasses from the temperate zone under a range of cutting and fertiliser regimes. Crop Pasture Sci 60:943. https://doi.org/10.1071/CP09067 Nielsen UN, Prior S, Delroy B et al (2015) Response of belowground communities to short-term phosphorus addition in a phosphorus-limited woodland. Plant Soil 391:321–331. https://doi.org/10.1007/s11104-015-2432-6 Norby RJ, Kauwe MGD, Domingues TF et al (2015) Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol 209:17–28. https://doi.org/10.1111/nph.13593 Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310 Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609 Parihar M, Rakshit A, Meena VS et al (2020) The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch Microbiol 202:1581–1596. https://doi.org/10.1007/s00203-020-01915-x Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Change Biol 24:1–12. https://doi.org/10.1111/gcb.13850 Peñuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18:3–6. https://doi.org/10.1111/j.1365-2486.2011.02568.x Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194. https://doi.org/10.1111/j.1461-0248.2010.01570.x Phillips RP, Meier IC, Bernhardt ES et al (2012) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO 2. Ecol Lett 15:1042–1049. https://doi.org/10.1111/j.1461-0248.2012.01827.x Piñeiro J, Ochoa-Hueso R, Delgado-Baquerizo M et al (2017) Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: a global assessment. Sci Rep. https://doi.org/10.1038/s41598-017-15728-4 Rayment GE, Lyons DJ, Shelley B (2010) Soil chemical methods: Australasia. CSIRO Publishing, Victoria R Core Team (2019) R: the R project for statistical computing. https://www.r-project.org/. Accessed 24 Mar 2018 Reed SC, Townsend AR, Taylor PG, Cleveland CC (2011) Phosphorus cycling in tropical forests growing on highly weathered soils. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Berlin, Heidelberg, pp 339–369 Reed SC, Yang X, Thornton PE (2015) Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytol 208:324–329. https://doi.org/10.1111/nph.13521 Reich PB, Hobbie SE, Lee T et al (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925. https://doi.org/10.1038/nature04486 Reich PB, Hobbie SE, Lee TD (2014) Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat Geosci 7:920–924. https://doi.org/10.1038/ngeo2284 Robinson J, Munnich D, Simpson P, Orchard P (1993) Pasture associations and their relation to environment and agronomy in the Goulburn District. Aust J Bot 41:627. https://doi.org/10.1071/BT9930627 Ross GM, Horn S, Macdonald CA et al (2020) Metabarcoding mites: three years of elevated CO2 has no effect on oribatid assemblages in a Eucalyptus woodland. Pedobiologia 81:150667 Sato T, Ezawa T, Cheng W, Tawaraya K (2015) Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Sci Plant Nutr 61:269–274. https://doi.org/10.1080/00380768.2014.993298 Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2. https://doi.org/10.1186/2193-1801-2-587 Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331. https://doi.org/10.1046/j.1365-2435.2002.00626.x Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition1. Plant Physiol 156:1050–1057. https://doi.org/10.1104/pp.111.174581 Soepadmo E (1993) Tropical rain forests as carbon sinks. Chemosphere 27:1025–1039. https://doi.org/10.1016/0045-6535(93)90066-E Soka G, Ritchie M (2014) Arbuscular mycorrhizal symbiosis and ecosystem processes: prospects for future research in tropical soils. Open J Ecol 04:11–22. https://doi.org/10.4236/oje.2014.41002 Soong JL, Marañon-Jimenez S, Cotrufo MF et al (2018) Soil microbial CNP and respiration responses to organic matter and nutrient additions: evidence from a tropical soil incubation. Soil Biol Biochem 122:141–149. https://doi.org/10.1016/j.soilbio.2018.04.011 Souza RC, Solly EF, Dawes MA et al (2017) Responses of soil extracellular enzyme activities to experimental warming and CO2 enrichment at the alpine treeline. Plant Soil 416:527–537. https://doi.org/10.1007/s11104-017-3235-8 Sun Y, Peng S, Goll DS et al (2017) Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth’s Future 5:730–749. https://doi.org/10.1002/2016EF000472 Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963. https://doi.org/10.1111/j.1365-2435.2008.01402.x Tarnawski S, Aragno M (2006) The influence of elevated [CO2] on diversity, activity and biogeochemical functions of rhizosphere and soil bacterial communities. In: Nösberger J, Long SP, Norby RJ et al (eds) Managed ecosystems and CO2. Springer, Berlin/Heidelberg, pp 393–412 Tate KR (1984) The biological transformation of P in soil. Plant Soil 76:245–256. https://doi.org/10.1007/BF02205584 Terrer C, Vicca S, Hungate BA et al (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74. https://doi.org/10.1126/science.aaf4610 Terrer C, Jackson RB, Prentice IC et al (2019) Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat Clim Chang 9:684–689. https://doi.org/10.1038/s41558-019-0545-2 Terrer C, Phillips RP, Hungate BA et al (2021) A trade-off between plant and soil carbon storage under elevated CO2. Nature 591:599–603. https://doi.org/10.1038/s41586-021-03306-8 Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355. https://doi.org/10.1111/j.1469-8137.2004.01159.x Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515. https://doi.org/10.1046/j.1469-8137.2002.00470.x Treseder KK, Cross A (2006) Global distributions of arbuscular mycorrhizal fungi. Ecosystems 9:305–316 van Groenigen KJ, De Graaff M-A, Six J et al (2006) The impact of elevated atmospheric [CO2] on soil C and N dynamics: a meta-analysis. Managed ecosystems and CO2. Springer, Berlin, pp 373–391 Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707 Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15. https://doi.org/10.1890/08-0127.1 Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716 Wei L, Vosátka M, Cai B et al (2019) The role of arbuscular mycorrhiza fungi in the decomposition of fresh residue and soil organic carbon: a mini-review. Soil Sci Soc Am J 83:511–517. https://doi.org/10.2136/sssaj2018.05.0205 Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. CRC Crit Rev Plant Sci 32:1–20. https://doi.org/10.1080/07352689.2012.683375 Xu J, Liu S, Song S et al (2018) Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability. Soil Biol Biochem 120:181–190. https://doi.org/10.1016/j.soilbio.2018.02.010 Yang X, Thornton PE, Ricciuto DM, Hoffman FM (2016) Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys Res Lett 43:7205–7214. https://doi.org/10.1002/2016GL069241 Yuan Y, Li Y, Mou Z et al (2021) Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. Glob Change Biol 27:454–466. https://doi.org/10.1111/gcb.15407 Zhang Q, Wang YP, Matear RJ et al (2014) Nitrogen and phosphorous limitations significantly reduce future allowable CO2 emissions. Geophys Res Lett 41:632–637. https://doi.org/10.1002/2013GL058352 Zhou J, Zang H, Loeppmann S et al (2019) Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2019.107641