Phospholipase C activity is increased in wheat seedlings inoculated with the rhizobacteria Azospirillum brasilense Sp245

Elda Castro-Mercado1, Ernesto García-Pineda1
1Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, CP 58040, Morelia, Michoacán, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andreeva Z, Barton D, Armour WJ, Li MY, Liao LF, McKellar HL, Pethybridge KA, Marc J (2010) Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. Plant 232:1263–1279. https://doi.org/10.1007/s00425-010-1256-0

Baldani VLD, de Alvarez MA MAB, Baldani JI, Dobereiner JD (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46. https://doi.org/10.1007/BF02277385

Bashan Y, de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth. A critical assessment. Adv Agron 108:77–136. https://doi.org/10.1016/S0065-2113(10)08002-8

Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. https://doi.org/10.1139/w04-035

Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325. https://doi.org/10.1038/361315a0

Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6:13–18. https://doi.org/10.4161/psb.6.1.14037

Cassan F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130. https://doi.org/10.1016/j.soilbio.2016.08.020

Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci 3:411–426. https://doi.org/10.1016/S1360-1385(98)01326-0

Chen G, Snyder CL, Greer MS, Weselake RJ (2011) Biology and biochemistry of plant phospholipases. Crit Rev Plant Sci 30:239–258. https://doi.org/10.1080/07352689.2011.572033

Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006) Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18:1438–1453. https://doi.org/10.1105/tpc.106.041582

Durban MA, Bornscheuer UT (2007) An improved assay for the determination of phospholipase C activity. Eur J Lipid Sci Technol 109:469–473. https://doi.org/10.1002/ejlt.200700027

Gabev E, Kasianowicz J, Abbott T, McLaughlin S (1989) Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP 2). Biochim Biophys Acta 979:105–112. https://doi.org/10.1016/0005-2736(89)90529-4

Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907

Hong Y, Zhao J, Guo L, Kim S-C, Deng X, Wang G, Zhang G, Li M, Wang X (2016) Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 62:55–74. https://doi.org/10.1016/j.plipres.2016.01.002

Kanehara K, Yu C-Y, Cho Y, Cheong W-F, Torta F, Shui G, Wenk MR, Nakamura Y (2015) Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genet 11:e1005511. https://doi.org/10.1371/journal.pgen.1005511

Khodakovskaya M, Sword C, Wu Q, Perera IY, Boss WF, Brown CS, Sederoff HW (2010) Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato. Plant Biotechnol J 8:170–183. https://doi.org/10.1111/j.1467-7652.2009.00472.x

Komis G, Galatis B, Quader H, Galanopoulou D, Apostolakos P (2008) Phospholipase C signaling involvement in macrotubule assembly and activation of the mechanism regulating protoplast volume in plasmolyzed root cells of Triticum turgidum. New Phytol 178:267–282. https://doi.org/10.1111/j.1469-8137.2007.02363.x

Mariani ME, Madoery RR, Fidelio GD (2015) Auxins action on Glycine max secretory phospholipase A2 is mediated by the interfacial properties imposed by the phytohormones. Chem Phys Lipids 189:1–6. https://doi.org/10.1016/j.chemphyslip.2015.05.003

Ohanian J, Ohanian V (2001) Lipid second messenger regulation: the role of diacylglycerol kinases and their relevance to hypertension. J Hum Hypertens 15:93–98. https://doi.org/10.1038/sj.jhh.1001139

Pereyra CM, Ramella NA, Pereyra MA, Barassi CA, Creus CM (2010) Changes in cucumber hypocotyl cell wall dynamics caused by Azospirillum brasilense inoculation. Plant Physiol Biochem 48:62–69. https://doi.org/10.1016/j.plaphy.2009.10.001

Peters C, Kim S-C, Devaiah S, Li M, Wang X (2014) Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ 37:2002–2013. https://doi.org/10.1111/pce.12334

Pokotylo I, Pejchar P, Potocky M, Kocourkova D, Krckova Z, Ruelland E, Kravets V, Martinec J (2013) The plant non-specific phospholipase C gene family. Novel competitors in lipid signaling. Prog Lipid Res 52:62–79. https://doi.org/10.1016/j.plipres.2012.09.001

Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E (2014) Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 96:144–157. https://doi.org/10.1016/j.biochi.2013.07.004

Profotová B, Burketová L, Novotná Z, Martinec J, Valentová O (2006) Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiol Biochem 44:143–151. https://doi.org/10.1016/j.plaphy.2006.02.003

Scherer GFE (1995) Activation of phospholipase A2 by auxin and mastoparan in hypocotyl segments from zucchini and sunflower. J Plant Physiol 145:483–490. https://doi.org/10.1016/S0176-1617(11)81775-X

Singh A, Kanwar P, Pandey A, Tyagi AK, Sopory SK, Kapoor S, Pandey GK (2013) Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS One 8:e62494. https://doi.org/10.1371/journal.pone.0062494

Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23. https://doi.org/10.1007/s11104-008-9560-1

Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x

Tsukagoshi H (2012) Defective root growth triggered by oxidative stress is controlled through the expression of cell cycle-related genes. Plant Sci 197:30–39. https://doi.org/10.1016/j.plantsci.2012.08.011

Tuteja N, Sopory SK (2008) Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3:79–86

Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342

Vermeer JEM, van Wijk R, Goedhart G, Geldner N, Chory J, Gadella TWJ Jr, Munnik T (2017) In vivo imaging of diacylglycerol at the cytoplasmic leaflet of plant membranes. Plant Cell Physiol 58:1196–1207. https://doi.org/10.1093/pcp/pcx012

Vossen JH, Abd-El-Haliem A, Fradin EF, Van Den Berg G, Ekengren SK, Meijer HJG, Seifi A, Bai Y, Ten Have A, Munnik T, Thomma BPHJ, Joosten MHAJ (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239. https://doi.org/10.1111/j.1365-313X.2010.04136.x

Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231. https://doi.org/10.1146/annurev.arplant.52.1.211

Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336. https://doi.org/10.1016/j.pbi.2004.03.012

Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GF (2010) Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant 3:610–625. https://doi.org/10.1093/mp/ssq005