Phosphoinositides Signaling and Epithelial-to-Mesenchymal Transition: Putative Topic for Basic Toxicological Research

Toxicological Research - Tập 24 - Trang 1-9 - 2008
Chang Ho Lee1
1Department of Pharmacology and Biomedical Science, College of Medicine, Hanyang University, Sungdong-gu, Seoul, Korea

Tóm tắt

Ptdlns(4,5)P2 is a key cellular phosphoinositide that localizes in separate and distinctive pools in subcellular membrane and vesicular compartments. In membranes, Ptdlns(4,5)P2 acts as a precursor to second messengers and is itself a main signaling and targeting molecule. Specific subcellular localization of type I PIP kinases directed by interacting with specific targeting module differentiates Ptdlns(4,5)P2 production in a spatial and temporal manner. Several lines of evidences support the idea that Ptdlns(4,5)P2 is generated in very specific pools in a spatial and temporal manner or by feeding Ptdlns(4,5)P2 directly to effectors. In this concept, the interaction of PIPKI isoforms with a specific targeting module to allow precise subcellular targeting modulates highly specific Ptdlns(4,5)P2 synthesis and channeling overall effectors. For instance, localization of PIPKIγ661 to focal adhesions by an interaction with talin results in spatial and temporal production of Ptdlns(4,5)P2, which regulates EGF-stimulated directional cell migration. In addition, Type lγ PIPK is targeted to E-cadherin in cell adherence junction and plays a role in controlling dynamics of cell adherence junction and endocytosis of E-cadherin. Characterizing how PIP kinase isoforms are regulated by interactions with their targeting modules, as well as the mechanisms by which their product, Ptdlns(4,5)P2, exerts its effects on cellular signaling processes, is crucial to understand the harmonized control of numerous cellular signaling pathways. Thus, in this review the roles of the Ptdlns(4)P(5) kinases and Ptdlns(4,5)P2 were described and critically reviewed in terms of regulation of the E-cadherin trafficking, cell migration, and formation of cell adherence junction which is indispensable and is tightly controlled in epithelial-to-mesenchymal transition process.

Tài liệu tham khảo

Aikawa, Y. and Martin, T.F. (2003). ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J. Cell Biol., 162, 647–659. Anastasiadis, P.Z. and Reynolds, A.B. (2000). The p120 cate-nin family: complex roles in adhesion, signaling and cancer. J. Cell Sci., 113, 1319–1334. Aoyagi, K., Sugaya, T., Umeda, M., Yamamoto, S., Terakawa, S. and Takahashi, M. (2005). The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphos-phate microdomains at syntaxin clusters. J. Biol. Chem., 280, 17346–17352. Arias, A.M. (2001). Epithelial mesenchymal interactions in cancer and development. Cell, 105, 425–431. Becker, K.R., Rosivatz, E., Blechschmidt, K., Kremmer, E., Sarbia, M. and Hofler, H. (2007). Analysis of the E-cad-herin repressor Snail in primary human cancers. Cells Tissues Organs, 185, 204–212. Birchmeier, W. and Birchmeier, C. (1995). Epithelial-mesen-chymal transitions in development and tumor progression. EXS, 74, 1–15. Bonifacino, J.S. and Traub, L.M. (2003). Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem., 72, 395–447. Boronenkov, I.V., Loijens, J.C., Umeda, M. and Anderson, R.A. (1998). Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell., 9, 3547–3560. Brett, T.J., Traub, L.M. and Fremont, D.H. (2002). Accessory protein recruitment motifs in clathrin-mediated endocyto-sis. Structure, 10, 797–809. Brown, M.T., Andrade, J., Radhakrishna, H., Donaldson, J.G., Cooper, J.A. and Randazzo, R.A. (1998). ASAP1, a phos-pholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell. Biol., 18, 7038–7051. Bryant, D.M. and Stow, J.L. (2004). The ins and outs of E-cadherin trafficking. Trends Cell Biol., 14, 427–434. Cano, A., Perez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F. and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2, 76–83. Carvell, M.J., Marsh, P.J., Persaud, S.J. and Jones, P.M. (2007). E-Cadherin interactions regulate beta-cell proliferation in islet-like structures. Cell Physiol. Biochem., 20, 617–626. Charest, P.G. and Firtel, R.A. (2006). Feedback signaling controls leading-edge formation during chemotaxis. Curr. Opin. Genet. Dev., 16, 339–347. Conacci-Sorrell, M., Zhurinsky, J. and Ben-Ze’ev, A. (2002). The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Invest, 109, 987–991. Cremona, O. and De Camilli, P. (2001). Phosphoinositides in membrane traffic at the synapse. J. Cell Sci., 114, 1041–1052. D’Souza-Schorey, C. (2005). Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol., 15, 19–26. DesMarais, V., Ghosh, M., Eddy, R. and Condeelis, J. (2005). Cofilin takes the lead. J. Cell Sci, 118, 19–26. Di Paolo, G., Pellegrini, L., Letinic, K., Cestra, G., Zoncu, R., Voronov, S., Chang, S., Guo, J., Wenk, M.R. and De Camilli, P. (2002). Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature, 420, 85–89. Divecha, N., Roefs, M., Halstead, J.R., D’Andrea, S., Fernan-dez-Borga, M., Oomen, L., Saqib, K.M., Wakelam, M.J. and D’Santos, C. (2000). Interaction of the type lalpha PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4,5-bisphosphate in the regulation of PLD2 activity. EMBO J., 19, 5440–5449. Donaldson, J.G. and Jackson, C.L. (2000). Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol., 12, 475–482. Doughman, R.L., Firestone, A.J., Wojtasiak, M.L., Bunce, M.W. and Anderson, R.A. (2003). Membrane ruffling requires coordination between type lalpha phosphatidylinositol phosphate kinase and Rac signaling. J. Biol. Chem., 278, 23036–23045. Downes, C.P., Gray, A. and Lucocq, J.M. (2005). Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol., 15, 259–268. Fawcett, J. and Pawson, T. (2000). Signal transduction. N-WASP regulation-the sting in the tail. Science, 290, 725–726. Frame, M.C., Fincham, V.J., Carragher, N.O. and Wyke, J.A. (2002). v-Src’s hold over actin and cell adhesions. Nat. Rev. Mol. Cell Biol., 3, 233–245. Frisch, S.M. (1997). The epithelial cell default-phenotype hypothesis and its implications for cancer. Bioessays, 19, 705–709. Gan, Y., McGraw, T.E. and Rodriguez-Boulan, E. (2002). The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nat. Cell Biol., 4, 605–609. Golub, T. and Caroni, P. (2005). PI(4,5)P2-dependent micro-domain assemblies capture microtubules to promote and control leading edge motility. J. Cell Biol., 169, 151–165. Gong, L.W., Di Paolo, G., Diaz, E., Cestra, G., Diaz, M.E., Lindau, M., De Camilli, P. and Toomre, D. (2005). Phosphatidylinositol phosphate kinase type I gamma regulates dynamics of large dense-core vesicle fusion. Proc. Natl. Acad. Sci. USA, 102, 5204–5209. Gumbiner, B.M. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 84, 345–357. Hajra, K.M., Chen, D.Y. and Fearon, E.R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer. Res., 62, 1613–1618. Halbleib, J.M. and Nelson, W.J. (2006). Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev., 20, 3199–3214. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science, 279, 509–514. Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell, 100, 57–70. Hilgemann, D.W. and Ball, R. (1996). Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science, 273, 956–959. Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A.J., Frohman, M.A. and Kanaho, Y. (1999). Phos-phatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 99, 521–532. Honing, S., Ricotta, D., Krauss, M., Spate, K., Spolaore, B., Motley, A., Robinson, M., Robinson, C., Haucke, V. and Owen, D.J. (2005). Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associ-ated adaptor complex AP2. Mol. Cell, 18, 519–531. Horwitz, A.R. and Parsons, J.T (1999). Cell migration-movin’ on. Science, 286, 1102–1103. Hugo, H., Ackland, M.L., Blick, T., Lawrence, M.G., Clements, J.A., Williams, E.D. and Thompson, E.W. (2007). Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J. Cell Physiol., 213, 374–383. Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687. Insall, R.H. and Weiner, O.D. (2001). PIP3, PIP2, and cell movement-similar messages, different meanings? Dev. Cell, 1, 743–747. Ishihara, H., Shibasaki, Y., Kizuki, N., Katagiri, H., Yazaki, Y., Asano, T. and Oka, Y. (1996). Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem., 271, 23611–23614. Ishihara, H., Shibasaki, Y., Kizuki, N., Wada, T., Yazaki, Y., Asano, T. and Oka, Y. (1998). Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J. Biol. Chem., 273, 8741–8748. Itoh, T., Ijuin, T. and Takenawa, T. (1998). A novel phosphati-dylinositol-5-phosphate 4-kinase (phosphatidylinositol-phos-phate kinase llgamma) is phosphorylated in the endoplasmic reticulum in response to mitogenic signals. J. Biol. Chem., 273, 20292–20299. Jamora, C. and Fuchs, E. (2002). Intercellular adhesion, signalling and the cytoskeleton. Nat. Cell Biol., 4, E101–108. Janetopoulos, O., Ma, L., Devreotes, P.N. and Iglesias, P.A. (2004). Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl. Acad. Sci. USA, 101, 8951–8956. Jenkins, G.H., Fisette, P.L. and Anderson, R.A. (1994). Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J. Biol. Chem., 269, 11547–11554. Jones, D.R., Sanjuan, M.A. and Merida, I. (2000). Type lalpha phosphatidylinositol 4-phosphate 5-kinase is a putative target for increased intracellular phosphatidic acid. FEBSLett., 476, 160–165. Kam, J.L., Miura, K., Jackson, T.R., Gruschus, J., Roller, P., Stauffer, S., Clark, J., Aneja, R. and Randazzo, P.A. (2000). Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site. J. Biol. Chem., 275, 9653–9663. Kirchhausen, T. (1999). Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol., 15, 705–732. Kisseleva, M., Feng, Y., Ward, M., Song, C., Anderson, R.A. and Longmore, G.D. (2005). The LIM protein Ajuba regulates phosphatidylinositol 4,5-bisphosphate levels in migrating cells through an interaction with and activation of PIPKI alpha. Mol. Cell Biol., 25, 3956–3966. Knust, E. (2000). Control of epithelial cell shape and polarity. Curr. Opin. Genet. Dev, 10, 471–475. Kunz, J., Wilson, M.P., Kisseleva, M., Hurley, J.H., Majerus, P.W. and Anderson, R.A. (2000). The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell, 5, 1–11. Lanier, L.M. and Gertler, F.B. (2000). Actin cytoskeleton: thinking globally, actin’ locally. Curr. Biol., 10, R655-R657. Le, T.L., Yap, A.S. and Stow, J.L. (1999). Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol., 146, 219–232. Ling, K., Bairstow, S.F., Carbonara, C., Turbin, D.A., Huntsman, D.G. and Anderson, R.A. (2007). Type Igamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. J. Cell Biol., 176, 343–353. Ling, K., Doughman, R.L., Firestone, A.J., Bunce, M.W. and Anderson, R.A. (2002). Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature, 420, 89–93. Ling, K., Doughman, R.L., Iyer, V.Y., Firestone, A.J., Bairstow, S.F., Mosher, D.F., Schaller, M.D. and Anderson, R.A. (2003). Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an inte-grin-talin switch. J. Cell Biol., 163, 1339–1349. Ling, K., Schill, N.J., Wagoner, M.P., Sun, Y. and Anderson, R.A. (2006). Movin’ on up: the role of Ptdlns(4,5)P(2) in cell migration. Trends Cell Biol., 16, 276–284. Loijens, J.C. and Anderson, R.A. (1996). Type I phosphati-dylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J. Biol. Chem., 271, 32937–32943. Martel, V., Racaud-Sultan, C., Dupe, S., Marie, C., Paulhe, F., Galmiche, A., Block, M.R. and Albiges-Rizo, C. (2001). Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem., 276, 21217–21227. Martin, T.F. (2001). PI(4,5)P(2) regulation of surface membrane traffic. Curr. Opin. Cell Biol., 13, 493–499. Moss, J. and Vaughan, M. (1998). Molecules in the ARF orbit. J. Biol. Chem., 273, 21431–21434. Moustakas, A. and Heldin, C.H. (2007). Signaling networks guiding epithelial-mesenchymal transitions during embryo-genesis and cancer progression. Cancer. Sci., 98, 1512–1520. Nelson, W.J. and Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 303, 1483–1487. Niggli, V. (2005). Regulation of protein activities by phosphoi-nositide phosphates. Annu. Rev. Cell Dev. Biol., 21, 57–79. Nobes, C.D. and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipo-dia, and filopodia. Cell, 81, 53–62. Oloumi, A., McPhee, T. and Dedhar, S. (2004). Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim. Bio-phys. Acta., 1691, 1–15. Oude Weernink, P.A., Schmidt, M. and Jakobs, K.H. (2004). Regulation and cellular roles of phosphoinositide 5-kinases. Eur. J. Pharmacol., 500, 87–99. Parker, P.J. (1995). Intracellular signalling. PI 3-kinase puts GTP on the Rac. Curr. Biol., 5, 577–579. Powner, D.J., Payne, R.M., Pettitt, T.R., Giudici, M.L., Irvine, R.F. and Wakelam, M.J. (2005). Phospholipase D2 stimulates integrin-mediated adhesion via phosphatidylinositol 4-phosphate 5-kinase Igamma b. J. Cell Sci., 118, 2975–2986. Powner, D.J. and Wakelam, M.J. (2002). The regulation of phospholipase D by inositol phospholipids and small GTPases. FEBS Lett., 531, 62–64. Radisky, D.C. (2005). Epithelial-mesenchymal transition. J. Cell Sci., 118, 4325–4326. Rameh, L.E., Tolias, K.F., Duckworth, B.C. and Cantley, L.C. (1997). A new pathway for synthesis of phosphatidylinosi-tol-4,5-bisphosphate. Nature, 390, 192–196. Ridley, A.J. and Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70, 389–399. Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D. and Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70, 401–410. Santarius, M., Lee, C.H. and Anderson, R.A. (2006). Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular Ptdlns(4,5)P2 pools. Biochem. J., 398, 1–13. Savagner, P. (2001). Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 23, 912–923. Suh, B.C. and Hille, B. (2005). Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neuro-biol., 15, 370–378. Sun, Y., Ling, K., Wagoner, M.P. and Anderson, R.A. (2007). Type I gamma phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration. J. Cell Biol., 178, 297–308. Syed, V., Mak, P., Du, C. and Balaji, K.C. (2007). beta-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1. J. Cell Biochem., On-line. Symons, M. (1995). The Rac and Rho pathways as a source of drug targets for Ras-mediated malignancies. Curr. Opin. Biotechnol., 6, 668–674. Symons, M. (1996). Rho family GTPases: the cytoskeleton and beyond. Trends Biochem. Sci., 21, 178–181. Tadokoro, S., Shattil, S.J., Eto, K., Tai, V., Liddington, R.C., de Pereda, J.M., Ginsberg, M.H. and Calderwood, D.A. (2003). Talin binding to integrin beta tails: a final common step in integrin activation. Science, 302, 103–106. Takei, K. and Haucke, V. (2001). Clathrin-mediated endocyto-sis: membrane factors pull the trigger. Trends Cell Biol., 11, 385–391. Theard, D., Steiner, M., Kalicharan, D., Hoekstra, D. and van Ijzendoorn, S.C. (2007). Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions. Mol. Biol. Cell, 18, 2313–2321. Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2, 442–454. Tilghman, R.W., Slack-Davis, J.K., Sergina, N., Martin, K.H., Iwanicki, M., Hershey, E.D., Beggs, H.E., Reichardt, L.F and Parsons, J.T. (2005). Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J. Cell Sci, 118, 2613–2623. Tolias, K.F., Couvillon, A.D., Cantley, L.C. and Carpenter, C.L. (1998). Characterization of a Rac1- and RhoGDI-associ-ated lipid kinase signaling complex. Mol. Cell Biol., 18, 762–770. Van Aelst, L. and D’Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev., 11, 2295–2322. Van Aelst, L. and Symons, M. (2002). Role of Rho family GTPases in epithelial morphogenesis. Genes Dev., 16, 1032–1054. Vega-Salas, D.E., Salas, P.J., Gundersen, D. and Rodriguez-Boulan, E. (1987). Formation of the apical pole of epithelial (Madin-Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions. J. Cell Biol., 104, 905–916. Vernon, A.E. and LaBonne, C. (2004). Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Curr. Biol., 14, R719–R721. Vestweber, D. (2008). VE-Cadherin. The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler. Thromb. Vase. Biol., 28, 223–232. Wang, F., Herzmark, P., Weiner, O.D., Srinivasan, S., Servant, G. and Bourne, H.R. (2002). Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol., 4, 513–518. Webb, D.J., Parsons, J.T. and Horwitz, A.F (2002). Adhesion assembly, disassembly and turnover in migrating cells -over and over and over again. Nat. Cell Biol., 4, E97–E100. Willis, B.C. and Borok, Z. (2007). TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell Mol. Physiol., 293, L525-L534. Wodarz, A. and Nathke, I. (2007). Cell polarity in development and cancer. Nat. Cell Biol., 9, 1016–1024. Yam, P.T., Wilson, C.A., Ji, L., Hebert, B., Barnhart, E.L., Dye, N.A., Wiseman, P.W., Danuser, G. and Theriot, J.A. (2007). Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol., 178, 1207–1221. Yang, S.A., Carpenter, C.L. and Abrams, C.S. (2004). Rho and Rho-kinase mediate thrombin-induced phosphatidyli-nositol 4-phosphate 5-kinase trafficking in platelets. J. Biol. Chem., 279, 42331–2336. Zavadil, J. and Bottinger, E.P. (2005). TGF-beta and epithe-lial-to-mesenchymal transitions. Oncogene, 24, 5764–5774. Zhang, X., Loijens, J.C., Boronenkov, I.V., Parker, G.J., Norris, F.A., Chen, J., Thum, O., Prestwich, G.D., Majerus, P.W. and Anderson, R.A. (1997). Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem., 272, 17756–17761. Zigmond, S.H. (1996). Signal transduction and actin filament organization. Cum Opin. Cell Biol., 8, 66–73. Zuppinger, C., Eppenberger-Eberhardt, M. and Eppenberger, H.M. (2000). N-Cadherin: structure, function and importance in the formation of new intercalated disc-like cell contacts in cardiomyocytes. Heart Fail Rev., 5, 251–257.