Phosphine oxide additives for perovskite light-emitting diodes and solar cells

Chem - Tập 9 - Trang 562-575 - 2023
Xuehan Chen1, Jing Huang2, Feng Gao3, Bo Xu1
1MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
3Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping 58183, Sweden

Tài liệu tham khảo

Wang, 2021, Perovskite nanocrystals: synthesis, stability, and optoelectronic applications, Small Struct., 2, 2000124, 10.1002/sstr.202000124 Frost, 2017, Calculating polaron mobility in halide perovskites, Phys. Rev. B, 96, 195202, 10.1103/PhysRevB.96.195202 Shrestha, 2022, Long carrier diffusion length in two-dimensional lead halide perovskite single crystals, Chem, 8, 1107, 10.1016/j.chempr.2022.01.008 Subedi, 2022, Urbach energy and open-circuit voltage deficit for mixed anion-cation perovskite solar cells, ACS Appl. Mater. Interfaces, 14, 7796, 10.1021/acsami.1c19122 Ni, 2020, Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells, Science, 367, 1352, 10.1126/science.aba0893 Lin, 2018, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent, Nature, 562, 245, 10.1038/s41586-018-0575-3 Song, 2015, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Adv. Mater., 27, 7162, 10.1002/adma.201502567 Song, 2018, Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48, Adv. Mater., 30, e1805409, 10.1002/adma.201805409 Xiao, 2019, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives, Adv. Mater., 31, e1803792, 10.1002/adma.201803792 Park, 2016, Methodologies for high efficiency perovskite solar cells, Nano Converg., 3, 15, 10.1186/s40580-016-0074-x Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591 Liu, 2022, Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes, J. Am. Chem. Soc., 144, 4009, 10.1021/jacs.1c12556 Liu, 2021, Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation, Adv. Mater., 33, e2103268, 10.1002/adma.202103268 Wang, 2021, All-inorganic quantum-dot LEDs based on a phase-stabilized alpha-CsPbI3 perovskite, Angew. Chem. Int. Ed. Engl., 60, 16164, 10.1002/anie.202104812 Min, 2021, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature, 598, 444, 10.1038/s41586-021-03964-8 Tan, 2014, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nanotechnol., 9, 687, 10.1038/nnano.2014.149 Li, 2015, Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix, Nano Lett., 15, 2640, 10.1021/acs.nanolett.5b00235 Zhang, 2017, Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes, Nat. Commun., 8, 15640, 10.1038/ncomms15640 Zhang, 2016, Bright perovskite nanocrystal films for efficient light-emitting devices, J. Phys. Chem. Lett., 7, 4602, 10.1021/acs.jpclett.6b02073 Li, 2018, Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs, Chem. Mater., 30, 6099, 10.1021/acs.chemmater.8b02544 Si, 2017, Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses, ACS Nano, 11, 11100, 10.1021/acsnano.7b05191 Wang, 2017, Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites, ACS Appl. Mater. Interfaces, 9, 29901, 10.1021/acsami.7b07458 Dong, 2020, Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots, Nat. Nanotechnol., 15, 668, 10.1038/s41565-020-0714-5 Zhang, 2022, Review on efficiency improvement effort of perovskite solar cell, Sol. Energy, 233, 421, 10.1016/j.solener.2022.01.060 Liu, 2019, Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures, Nat. Photonics, 13, 760, 10.1038/s41566-019-0505-4 Shankar, 2022, Boosting the stability of lead halide perovskite nanocrystals by metal–organic frameworks and their applications, J. Mater. Chem. C, 10, 11532, 10.1039/D2TC02243E Meggiolaro, 2018, First-principles modeling of defects in lead halide perovskites: best practices and open issues, ACS Energy Lett., 3, 2206, 10.1021/acsenergylett.8b01212 Kang, 2017, High defect tolerance in lead halide perovskite CsPbBr3, J. Phys. Chem. Lett., 8, 489, 10.1021/acs.jpclett.6b02800 Keeble, 2021, Identification of lead vacancy defects in lead halide perovskites, Nat. Commun., 12, 5566, 10.1038/s41467-021-25937-1 Lee, 2022, Enhanced band-filling effect in halide perovskites via hydrophobic conductive linkers, Cell Rep. Phys. Sci., 3, 100800, 10.1016/j.xcrp.2022.100800 Yin, 2021, Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets, ACS Energy Lett., 6, 477, 10.1021/acsenergylett.0c02651 Tsai, 2022, Cesium lead halide perovskite nanocrystals assembled in metal-organic frameworks for stable blue light emitting diodes, Adv. Sci. (Weinh), 9, e2105850, 10.1002/advs.202105850 Liu, 2022, Trade-off between the performance and stability of perovskite light-emitting diodes with excess halides, J. Phys. Chem. Lett., 13, 5179, 10.1021/acs.jpclett.2c01285 Nenon, 2018, Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases, J. Am. Chem. Soc., 140, 17760, 10.1021/jacs.8b11035 Hsiao, 2019, Bidentate chelating ligands as effective passivating materials for perovskite light-emitting diodes, Phys. Chem. Chem. Phys., 21, 7867, 10.1039/C8CP07000H Zeng, 2022, Surface stabilization of colloidal perovskite nanocrystals via multi-amine chelating ligands, ACS Energy Lett., 7, 1963, 10.1021/acsenergylett.2c00786 Noel, 2014, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites, ACS Nano, 8, 9815, 10.1021/nn5036476 Jana, 2022, Self-assembly of perovskite nanocrystals, Prog. Mater. Sci., 129, 100975, 10.1016/j.pmatsci.2022.100975 Li, 2022, Conductive phosphine oxide passivator enables efficient perovskite light-emitting diodes, Nano Lett., 22, 2490, 10.1021/acs.nanolett.2c00276 Li, 2020, Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells, Sol. Energy Mater. Sol. Cells, 211, 110527, 10.1016/j.solmat.2020.110527 Ma, 2020, Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes, J. Am. Chem. Soc., 142, 5126, 10.1021/jacs.9b12323 Zhang, 2022, High performance sky-blue perovskite light-emitting diodes enabled by a bifunctional phosphate molecule, J. Alloys Compd., 897, 162727, 10.1016/j.jallcom.2021.162727 Xu, 2022, Efficient sky-blue light-emitting diodes based on oriented perovskite nanoplates, Adv. Opt. Mater., 10, 2101525, 10.1002/adom.202101525 Zhu, 2021, High triplet energy level molecule enables highly efficient sky-blue perovskite light-emitting diodes, J. Phys. Chem. Lett., 12, 11723, 10.1021/acs.jpclett.1c03518 Yang, 2018, Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation, Nat. Commun., 9, 570, 10.1038/s41467-018-02978-7 Zhao, 2022, Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes, Angew. Chem. Int. Ed. Engl., 61, e202117374, 10.1002/anie.202117374 Zhang, 2022, Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes, Light Sci. Appl., 11, 69, 10.1038/s41377-022-00761-4 Ma, 2021, Distribution control enables efficient reduced-dimensional perovskite LEDs, Nature, 599, 594, 10.1038/s41586-021-03997-z Feng, 2022, Improved inverted MAPbI3 perovskite solar cell with triphenylphosphine oxide passivation layer, Opt. Mater., 127, 112264, 10.1016/j.optmat.2022.112264 Sutanto, 2021, Phosphine oxide derivative as a passivating agent to enhance the performance of perovskite solar cells, ACS Appl. Energy Mater., 4, 1259, 10.1021/acsaem.0c02472 Schmidt, 2022, Phosphine oxide additives for high-brightness inorganic perovskite light-emitting diodes, Adv. Opt. Mater., 10, 2101602, 10.1002/adom.202101602 Yukta, 2021, Lewis base passivation of quasi-2D Ruddlesden–Popper perovskite for order of magnitude photoluminescence enhancement and improved stability, ACS Appl. Electron. Mater., 3, 1572, 10.1021/acsaelm.0c01032 Wu, 2017, Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand, Langmuir, 33, 12689, 10.1021/acs.langmuir.7b02963 Longo, 2017, High photoluminescence quantum yields in organic semiconductor-perovskite composite thin films, ChemSusChem, 10, 3788, 10.1002/cssc.201701265