Phosphine oxide additives for perovskite light-emitting diodes and solar cells
Tài liệu tham khảo
Wang, 2021, Perovskite nanocrystals: synthesis, stability, and optoelectronic applications, Small Struct., 2, 2000124, 10.1002/sstr.202000124
Frost, 2017, Calculating polaron mobility in halide perovskites, Phys. Rev. B, 96, 195202, 10.1103/PhysRevB.96.195202
Shrestha, 2022, Long carrier diffusion length in two-dimensional lead halide perovskite single crystals, Chem, 8, 1107, 10.1016/j.chempr.2022.01.008
Subedi, 2022, Urbach energy and open-circuit voltage deficit for mixed anion-cation perovskite solar cells, ACS Appl. Mater. Interfaces, 14, 7796, 10.1021/acsami.1c19122
Ni, 2020, Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells, Science, 367, 1352, 10.1126/science.aba0893
Lin, 2018, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent, Nature, 562, 245, 10.1038/s41586-018-0575-3
Song, 2015, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Adv. Mater., 27, 7162, 10.1002/adma.201502567
Song, 2018, Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48, Adv. Mater., 30, e1805409, 10.1002/adma.201805409
Xiao, 2019, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives, Adv. Mater., 31, e1803792, 10.1002/adma.201803792
Park, 2016, Methodologies for high efficiency perovskite solar cells, Nano Converg., 3, 15, 10.1186/s40580-016-0074-x
Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591
Liu, 2022, Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes, J. Am. Chem. Soc., 144, 4009, 10.1021/jacs.1c12556
Liu, 2021, Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation, Adv. Mater., 33, e2103268, 10.1002/adma.202103268
Wang, 2021, All-inorganic quantum-dot LEDs based on a phase-stabilized alpha-CsPbI3 perovskite, Angew. Chem. Int. Ed. Engl., 60, 16164, 10.1002/anie.202104812
Min, 2021, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature, 598, 444, 10.1038/s41586-021-03964-8
Tan, 2014, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nanotechnol., 9, 687, 10.1038/nnano.2014.149
Li, 2015, Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix, Nano Lett., 15, 2640, 10.1021/acs.nanolett.5b00235
Zhang, 2017, Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes, Nat. Commun., 8, 15640, 10.1038/ncomms15640
Zhang, 2016, Bright perovskite nanocrystal films for efficient light-emitting devices, J. Phys. Chem. Lett., 7, 4602, 10.1021/acs.jpclett.6b02073
Li, 2018, Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs, Chem. Mater., 30, 6099, 10.1021/acs.chemmater.8b02544
Si, 2017, Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses, ACS Nano, 11, 11100, 10.1021/acsnano.7b05191
Wang, 2017, Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites, ACS Appl. Mater. Interfaces, 9, 29901, 10.1021/acsami.7b07458
Dong, 2020, Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots, Nat. Nanotechnol., 15, 668, 10.1038/s41565-020-0714-5
Zhang, 2022, Review on efficiency improvement effort of perovskite solar cell, Sol. Energy, 233, 421, 10.1016/j.solener.2022.01.060
Liu, 2019, Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures, Nat. Photonics, 13, 760, 10.1038/s41566-019-0505-4
Shankar, 2022, Boosting the stability of lead halide perovskite nanocrystals by metal–organic frameworks and their applications, J. Mater. Chem. C, 10, 11532, 10.1039/D2TC02243E
Meggiolaro, 2018, First-principles modeling of defects in lead halide perovskites: best practices and open issues, ACS Energy Lett., 3, 2206, 10.1021/acsenergylett.8b01212
Kang, 2017, High defect tolerance in lead halide perovskite CsPbBr3, J. Phys. Chem. Lett., 8, 489, 10.1021/acs.jpclett.6b02800
Keeble, 2021, Identification of lead vacancy defects in lead halide perovskites, Nat. Commun., 12, 5566, 10.1038/s41467-021-25937-1
Lee, 2022, Enhanced band-filling effect in halide perovskites via hydrophobic conductive linkers, Cell Rep. Phys. Sci., 3, 100800, 10.1016/j.xcrp.2022.100800
Yin, 2021, Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets, ACS Energy Lett., 6, 477, 10.1021/acsenergylett.0c02651
Tsai, 2022, Cesium lead halide perovskite nanocrystals assembled in metal-organic frameworks for stable blue light emitting diodes, Adv. Sci. (Weinh), 9, e2105850, 10.1002/advs.202105850
Liu, 2022, Trade-off between the performance and stability of perovskite light-emitting diodes with excess halides, J. Phys. Chem. Lett., 13, 5179, 10.1021/acs.jpclett.2c01285
Nenon, 2018, Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases, J. Am. Chem. Soc., 140, 17760, 10.1021/jacs.8b11035
Hsiao, 2019, Bidentate chelating ligands as effective passivating materials for perovskite light-emitting diodes, Phys. Chem. Chem. Phys., 21, 7867, 10.1039/C8CP07000H
Zeng, 2022, Surface stabilization of colloidal perovskite nanocrystals via multi-amine chelating ligands, ACS Energy Lett., 7, 1963, 10.1021/acsenergylett.2c00786
Noel, 2014, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites, ACS Nano, 8, 9815, 10.1021/nn5036476
Jana, 2022, Self-assembly of perovskite nanocrystals, Prog. Mater. Sci., 129, 100975, 10.1016/j.pmatsci.2022.100975
Li, 2022, Conductive phosphine oxide passivator enables efficient perovskite light-emitting diodes, Nano Lett., 22, 2490, 10.1021/acs.nanolett.2c00276
Li, 2020, Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells, Sol. Energy Mater. Sol. Cells, 211, 110527, 10.1016/j.solmat.2020.110527
Ma, 2020, Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes, J. Am. Chem. Soc., 142, 5126, 10.1021/jacs.9b12323
Zhang, 2022, High performance sky-blue perovskite light-emitting diodes enabled by a bifunctional phosphate molecule, J. Alloys Compd., 897, 162727, 10.1016/j.jallcom.2021.162727
Xu, 2022, Efficient sky-blue light-emitting diodes based on oriented perovskite nanoplates, Adv. Opt. Mater., 10, 2101525, 10.1002/adom.202101525
Zhu, 2021, High triplet energy level molecule enables highly efficient sky-blue perovskite light-emitting diodes, J. Phys. Chem. Lett., 12, 11723, 10.1021/acs.jpclett.1c03518
Yang, 2018, Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation, Nat. Commun., 9, 570, 10.1038/s41467-018-02978-7
Zhao, 2022, Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes, Angew. Chem. Int. Ed. Engl., 61, e202117374, 10.1002/anie.202117374
Zhang, 2022, Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes, Light Sci. Appl., 11, 69, 10.1038/s41377-022-00761-4
Ma, 2021, Distribution control enables efficient reduced-dimensional perovskite LEDs, Nature, 599, 594, 10.1038/s41586-021-03997-z
Feng, 2022, Improved inverted MAPbI3 perovskite solar cell with triphenylphosphine oxide passivation layer, Opt. Mater., 127, 112264, 10.1016/j.optmat.2022.112264
Sutanto, 2021, Phosphine oxide derivative as a passivating agent to enhance the performance of perovskite solar cells, ACS Appl. Energy Mater., 4, 1259, 10.1021/acsaem.0c02472
Schmidt, 2022, Phosphine oxide additives for high-brightness inorganic perovskite light-emitting diodes, Adv. Opt. Mater., 10, 2101602, 10.1002/adom.202101602
Yukta, 2021, Lewis base passivation of quasi-2D Ruddlesden–Popper perovskite for order of magnitude photoluminescence enhancement and improved stability, ACS Appl. Electron. Mater., 3, 1572, 10.1021/acsaelm.0c01032
Wu, 2017, Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand, Langmuir, 33, 12689, 10.1021/acs.langmuir.7b02963
Longo, 2017, High photoluminescence quantum yields in organic semiconductor-perovskite composite thin films, ChemSusChem, 10, 3788, 10.1002/cssc.201701265