Phosphatized microfossils from the Miaohe Member of South China and their implications for the terminal Ediacaran biodiversity decline

Precambrian Research - Tập 388 - Trang 107001 - 2023
Qin Ye1, Zhihui An2, Yang Yu1, Ze Zhou1, Jun Hu1, Jinnan Tong1, Shuhai Xiao3
1State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, Institute of Advanced Studies, China University of Geosciences, Wuhan 430074, China
2Hubei Key Laboratory of Paleontology and Geological Environment Evolution (Wuhan Center of China Geological Survey), Wuhan 430205, China
3Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 USA

Tài liệu tham khảo

An, 2015, Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area, South China, Precambr. Res., 271, 243, 10.1016/j.precamres.2015.10.007 Anderson, 2017, Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia, Geology, 45, 1079, 10.1130/G39576.1 Anderson, 2019, Palaeobiology of latest Ediacaran phosphorites from the upper Khesen Formation, Khuvsgul Group, northern Mongolia, J. Syst. Palaeontol., 17, 501, 10.1080/14772019.2018.1443977 Barfod, 2002, New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils, Earth Planet. Sci. Lett., 201, 203, 10.1016/S0012-821X(02)00687-8 Brasier, 1992, Background to the Cambrian explosion, J. Geol. Soc. London, 149, 585, 10.1144/gsjgs.149.4.0585 Butterfield, 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen, Fossils Strata, 34, 1, 10.18261/8200376494-1994-01 Bykova, 2020, Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae, Precambr. Res., 350, 10.1016/j.precamres.2020.105875 Chai, 2022, A stem group Codium alga from the latest Ediacaran of South China provides taxonomic insight into the early diversification of the plant kingdom, BMC Biol., 20, 1, 10.1186/s12915-022-01394-0 Chen, 2004, 1 Chen, 1986, The geological significance of newly discovered microfossils from the upper Sinian (Doushantuo age) phosphorites, Sci. Geol. Sin., 1, 46 Cherif, 2016, Codium fragile subsp. fragile (Suringar) Hariot in Tunisia: morphological data and status of knowledge, Algae, 31, 129, 10.4490/algae.2016.31.4.17 Cohen, 2009, Large spinose microfossils in Ediacaran rocks as resting stages of early animals, Proc. Natl. Acad. Sci. USA, 106, 6519, 10.1073/pnas.0902322106 Cohen, 2015, The Proterozoic record of eukaryotes, Paleobiology, 41, 610, 10.1017/pab.2015.25 Condon, 2005, U-Pb ages from the Neoproterozoic Doushantuo Formation, China, Science, 308, 95, 10.1126/science.1107765 Darroch, 2018, Ediacaran extinction and Cambrian explosion, Trends Ecol. Evol., 33, 653, 10.1016/j.tree.2018.06.003 Ding, 2019, Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats, Sci. Rep., 9, 1, 10.1038/s41598-019-49993-2 Droser, 2017, The rise of animals in a changing environment: global ecological innovation in the late Ediacaran, Ann. Rev. Earth Planet. Sci., 45, 593, 10.1146/annurev-earth-063016-015645 Estevez, 2009, Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile, Glycobiology, 19, 212, 10.1093/glycob/cwn101 Evans, 2018, Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota, Emerg. Top. Life Sci., 2, 223, 10.1042/ETLS20170148 Evans, 2022, Environmental drivers of the first major animal extinction across the Ediacaran White Sea-Nama transition, Proc. Nat. Acad. Sci. USA, 119, 10.1073/pnas.2207475119 Gaucher, 2009, Neoproterozoic acritarch evolution, 319 Germs, 1986, Latest Proterozoic microfossils from the Nama Group, Namibia (south west Africa), Precambr. Res., 32, 45, 10.1016/0301-9268(86)90029-X Golubkova, 2015, Microfossils and Rb-Sr age of glauconite in the key section of the Upper Proterozoic of the northeastern part of the Russian plate (Keltmen-1 borehole), Dokl. Earth Sci., 462, 547, 10.1134/S1028334X15060045 Grazhdankin, 2014, Patterns of evolution of the Ediacaran soft-bodied biota, J. Paleo., 88, 269, 10.1666/13-072 Grazhdankin, 2020, Doushantuo-Pertatataka-type acanthomorphs and Ediacaran ecosystem stability, Geology, 48, 708, 10.1130/G47467.1 Grey, K., 2005. Ediacaran palynology of Australia. Memoirs of the Association of Australasian Palaeontologists 31, 1–439. Huntley, 2006, 1.3 Billion years of acritarch history: An empirical morphospace approach, Precambr. Res., 144, 52, 10.1016/j.precamres.2005.11.003 Jiang, 2007, Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient, Earth Planet. Sci. Lett., 261, 303, 10.1016/j.epsl.2007.07.009 Johnston, 2012, Uncovering the Neoproterozoic carbon cycle, Nature, 483, 320, 10.1038/nature10854 Knoll, 1987, Micropaleontology across the Precambrian-Cambrian boundary in Spitsbergen, J. Paleo., 61, 898, 10.1017/S0022336000029292 Knoll, 1992, Latest Proterozoic stratigraphy and Earth history, Nature, 356, 673, 10.1038/356673a0 Liu, 2019, Ediacaran microfossils from the Doushantuo Formation chert nodules in the Yangtze Gorges area, South China, and new biozones, Fossils & Strata, 65, 1, 10.1002/9781119564225.ch1 Liu, 2013, The biostratigraphic succession of acanthomorphic acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China and its biostratigraphic correlation with Australia, Precambr. Res., 225, 29, 10.1016/j.precamres.2011.07.009 Liu, 2014, Ediacaran acanthomorphic acritarchs and other microfossils from chert nodules of the upper Doushantuo Formation in the Yangtze Gorges area, South China, J. Paleo., 72, 1 McFadden, 2008, Pulsed oxygenation and biological evolution in the Ediacaran Doushantuo Formation, Proc. Nat. Acad. Sci. USA, 105, 3197, 10.1073/pnas.0708336105 Moczydłowska, 1991, Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland, Fossils Strata, 29, 1, 10.18261/8200374742-1991-01 Muscente, 2015, Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesis, Palaeogeogr. Palaeoclimatol. Palaeoecol., 434, 46, 10.1016/j.palaeo.2014.10.013 Narbonne, 2005, The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems, Annu. Rev. Earth Planet. Sci., 33, 421, 10.1146/annurev.earth.33.092203.122519 Ouyang, 2017, Acanthomorphic acritarchs of the Doushantuo Formation from an upper slope section in northwestern Hunan Province, South China, with implications for early-middle Ediacaran biostratigraphy, Precambr. Res., 298, 512, 10.1016/j.precamres.2017.07.005 Ouyang, 2019, Acanthomorphic acritarchs from the Ediacaran Doushantuo Formation at Zhangcunping in South China, with implications for the evolution of early Ediacaran eukaryotes, Precambr. Res., 320, 171, 10.1016/j.precamres.2018.10.012 Ouyang, 2021, Distribution of Ediacaran acanthomorphic acritarchs in the lower Doushantuo Formation of the Yangtze Gorges area, South China: evolutionary and stratigraphic implications, Precambr. Res., 353, 10.1016/j.precamres.2020.106005 Palacios, 2017, Organic-walled microfossils from the Ediacaran-Cambrian boundary stratotype section, Chapel Island and Random formations, Burin Peninsula, Newfoundland, Canada: Global correlation and significance for the evolution of early complex ecosystems, Geol. J., 53, 1728, 10.1002/gj.2998 Rooney, 2020, Calibrating the coevolution of Ediacaran life and environment, Proc. Nat. Acad. Sci. USA, 117, 16824, 10.1073/pnas.2002918117 Schopf, 1992, 1 Schwid, 2021, Differential weathering of diagenetic concretions and the formation of Neoproterozoic annulated discoidal structures, PALAIOS, 36, 15, 10.2110/palo.2020.018 Shang, 2022, Diverse multicellular algae from the early Ediacaran Doushantuo chert nodules and their palaeoecological implications, Precambr. Res., 368, 10.1016/j.precamres.2021.106508 Shang, 2019, Acritarchs from the Doushantuo Formation at Liujing section in Songlin area of Guizhou Province, South China: Implications for early-middle Ediacaran biostratigraphy, Precambr. Res., 334, 10.1016/j.precamres.2019.105453 Tang, 2008, Octoradiate spiral organisms in the Ediacaran of South China, Acta Geol. Sin., 82, 27 Vidal, 1997, Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton, Paleobiology, 23, 230, 10.1017/S0094837300016808 Volkova, 1983, Plant microfossils, 7 Xiao, 2004, New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China), J. Paleo., 78, 393, 10.1666/0022-3360(2004)078<0393:NMAFAA>2.0.CO;2 Xiao, 2000, Eumetazoan fossils in terminal Proterozoic phosphorites?, Proc. Nat. Acad. Sci. USA, 97, 13684, 10.1073/pnas.250491697 Xiao, 2020, Probable benthic macroalgae from the Ediacara Member South Australia, Precambr. Res., 350, 10.1016/j.precamres.2020.105903 Xiao, 1999, Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China, Lethaia, 32, 219, 10.1111/j.1502-3931.1999.tb00541.x Xiao, 2004, Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae, Am. J. Bot., 91, 214, 10.3732/ajb.91.2.214 Xiao, 2009, On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota, Trends Ecol. Evol., 24, 31, 10.1016/j.tree.2008.07.015 Xiao, 2014, The Weng’an biota and the Ediacaran radiation of multicellular eukaryotes, Natl. Sci. Rev., 1, 498, 10.1093/nsr/nwu061 Xiao, 2020, The Ediacaran Period, Geologic time scale 2020, Elsevier, 521 Xiao, 1998, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature, 391, 553, 10.1038/35318 Xiao, 2002, Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China, J. Paleo., 76, 347, 10.1666/0022-3360(2002)076<0347:MCCIAT>2.0.CO;2 Xiao, 2014, Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng’an (South China) and their implications for biostratigraphic correlation, J. Paleo., 88, 1, 10.1666/12-157R Xiao, 2017, Stable carbon isotopes of sedimentary kerogens and carbonaceous macrofossils from the Ediacaran Miaohe Member in South China: Implications for stratigraphic correlation and sources of sedimentary organic carbon, Precambr. Res., 302, 171, 10.1016/j.precamres.2017.10.006 Xiao, 2021, The Shibantan Lagerstätte: insights into the Proterozoic-Phanerozoic transition, J. Geol. Soc. London, 178, jgs2020, 10.1144/jgs2020-135 Yang, 2021, The tempo of Ediacaran evolution, Science Advance, 7, eabi9643 Yang, 2022, Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China, Geology, 50, 562, 10.1130/G49734.1 Ye, 2015, Phosphatized fossil assemblage from the Ediacaran Doushantuo Formation in Zhangcunping area, Yichang, Hubei Province, Acta Palaeontol. Sin., 54, 43 Ye, 2019, A systematic description of new macrofossil material from the upper Ediacaran Miaohe Member in South China, J. Syst. Palaeontol., 17, 183, 10.1080/14772019.2017.1404499 Ye, 2022, A microfossil assemblage from the Ediacaran Doushantuo Formation in the Shennongjia area (Hubei Province, South China): Filling critical paleoenvironmental and biostratigraphic gaps, Precambr. Res., 377, 10.1016/j.precamres.2022.106691 Yin, 1995, Microfossils from the Shibantan Member of the Dengying Formation in the Yangtze Gorges, western Hubei, Geological Review, 41, 197 Yin, 2007, 1 Yin, 2022, Diverse and complex developmental mechanisms of early Ediacaran embryo-like fossils from the Weng'an Biota, southwest China, Philos. Trans. R. Soc. B, 377, 20210032, 10.1098/rstb.2021.0032 Yin, 2011, Diverse small spinose acritarchs from the Ediacaran Doushantuo Formation, South China, Palaeoworld, 20, 279, 10.1016/j.palwor.2011.10.002 Yin, 2008, Quantitative analysis on the fossil abundance of the Ediacaran Weng'an biota, Guizhou, Acta Palaeontol. Sin., 47, 477 Yuan, 2002, 1 Yuan, 2016, 1 Zhang, 1985, Coccoid microfossils from the Doushantuo Formation (Late Sinian) of South China, Precambr. Res., 28, 163, 10.1016/0301-9268(85)90078-6 Zhang, 1989, Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China, Lethaia, 22, 113, 10.1111/j.1502-3931.1989.tb01674.x Zhang, 2017, New Megasphaera-like microfossils reveal their reproductive strategies, Precambr. Res., 300, 141, 10.1016/j.precamres.2017.08.006 Zhang, 1998, Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China, J. Paleo., 72, 1 Zhang, 2019, Economic phosphorite from the Ediacaran Doushantuo Formation, South China, and the Neoproterozoic-Cambrian phosphogenic event, Sed. Geol., 388, 1, 10.1016/j.sedgeo.2019.05.004 Zhang, 2018, Extensive marine anoxia during the terminal Ediacaran Period, Sci. Adv., 4, eaan8983, 10.1126/sciadv.aan8983 Zhang, 1992, New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China, Lethaia, 25, 1, 10.1111/j.1502-3931.1992.tb01788.x Zhou, 2007, Ediacaran d13C chemostratigraphy of South China, Chem. Geol., 237, 89, 10.1016/j.chemgeo.2006.06.021 Zhou, 2007, The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance, Geol. J., 42, 229, 10.1002/gj.1062 Zhou, 2017, A new SIMS zircon U-Pb date from the Ediacaran Doushantuo Formation: age constraint on the Weng'an biota, Geol. Mag., 154, 1193, 10.1017/S0016756816001175 Zhou, 2017, The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China, and its implications for the age and chemostratigraphic significance of the Shuram excursion, Precambr. Res., 288, 23, 10.1016/j.precamres.2016.11.007 Zhu, 2007, Integrated Ediacaran (Sinian) chronostratigraphy of South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 7, 10.1016/j.palaeo.2007.03.025 Zhu, 2008, Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia, Geology, 36, 867, 10.1130/G25203A.1