Phenylalanine as a hydroxyl radical-specific probe in pyrite slurries

Springer Science and Business Media LLC - Tập 13 - Trang 1-18 - 2012
Shawn C Fisher1, Martin AA Schoonen2, Bruce J Brownawell1
1School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, USA
2Department of Geosciences, Stony Brook University, Stony Brook, USA

Tóm tắt

The abundant iron sulfide mineral pyrite has been shown to catalytically produce hydrogen peroxide (H2O2) and hydroxyl radical ( . OH) in slurries of oxygenated water. Understanding the formation and fate of these reactive oxygen species is important to biological and ecological systems as exposure can lead to deleterious health effects, but also environmental engineering during the optimization of remediation approaches for possible treatment of contaminated waste streams. This study presents the use of the amino acid phenylalanine (Phe) to monitor the kinetics of pyrite-induced . OH formation through rates of hydroxylation forming three isomers of tyrosine (Tyr) - ortho-, meta-, and para-Tyr. Results indicate that about 50% of the Phe loss results in Tyr formation, and that these products further react with . OH at rates comparable to Phe. The overall loss of Phe appeared to be pseudo first-order in [Phe] as a function of time, but for the first time it is shown that initial rates were much less than first-order as a function of initial substrate concentration, [Phe]o. These results can be rationalized by considering that the effective concentration of . OH in solution is lower at a higher level of reactant and that an increasing fraction of . OH is consumed by Phe-degradation products as a function of time. A simplified first-order model was created to describe Phe loss in pyrite slurries which incorporates the [Phe]o, a first-order dependence on pyrite surface area, the assumption that all Phe degradation products compete equally for the limited supply of highly reactive . OH, and a flux that is related to the release of H2O2 from the pyrite surface (a result of the incomplete reduction of oxygen at the pyrite surface). An empirically derived rate constant, K pyr , was introduced to describe a variable . OH-reactivity for different batches of pyrite. Both the simplified first-order kinetic model, and a more detailed numerical simulation, yielded results that compare well to the observed kinetic data describing the effects of variations in concentrations of both initial Phe and pyrite. This work supports the use of Phe as a useful probe to assess the formation of . OH in the presence of pyrite, and its possible utility for similar applications with other minerals.

Tài liệu tham khảo

Rao KS: Free Radical Induced Oxidative damage to DNA: Relation to Brain Aging and Neurological Disorders. Indian Journal of Biochemistry & Biophysics. 2009, 46: 9-15. Houghton AM, Mouded M, Shapiro SD: Common origins of lung cancer and COPD. Nature Medicine. 2008, 14: 1023-1024. 10.1038/nm1008-1023. Turrens JF: Superoxide production by the mitochondrial respiratory chain. Bioscience Reports. 1997, 17: 3-8. 10.1023/A:1027374931887. Monks PS, Granier C, Fuzzi S, Stohl A, Williams ML, Akimoto H, Amann M, Baklanov A, Baltensperger U, Bey I, Blake N, Blake RS, Carslaw K, Cooper OR, Dentener F, Fowler D, Fragkou E, Frost GJ, Generoso S, Ginoux P, Grewe V, Guenther A, Hansson HC, Henne S, Hjorth J, Hofzumahaus A, Huntrieser H, Isaksen ISA, Jenkin ME, Kaiser J, et al: Atmospheric composition change - global and regional air quality. Atmospheric Environment. 2009, 43: 5268-5350. 10.1016/j.atmosenv.2009.08.021. Kwan WP, Voelker BM: Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol. 2003, 37: 1150-1158. 10.1021/es020874g. Schoonen MAA, Harrington AD, Laffers R, Strongin DR: Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen. Geochim Cosmochim Acta. 2010, 74: 4971-4987. 10.1016/j.gca.2010.05.028. Schoonen MAA, Cohn CA, Roemer E, Laffers R, Simon SR, O'Riordan T: Mineral-induced formation of reactive oxygen species. Medical Mineraology and Geochemistry. Volume 64 Reviews in Mineralogy & Geochemistry. 2006, Chantilly: Mineralogical Soc America, 179-221. Borda MJ, Elsetinow AR, Strongin DR, Schoonen MA: A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim Cosmochim Acta. 2003, 67: 935-939. 10.1016/S0016-7037(02)01222-X. Vione D, Ponzo M, Bagnus D, Maurino V, Minero C, Carlotti ME: Comparison of different probe molecules for the quantification of hydroxyl radicals in aqueous solution. Environmental Chemistry Letters. 8: 95-100. Cohn CA, Mueller S, Wimmer E, Leifer N, Greenbaum S, Strongin DR, Schoonen MAA: Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions. 2006, 7: 11-10.1186/1467-4866-7-11. Cohn CA, Pedigo CE, Hylton SN, Simon SR, Schoonen MAA: Evaluating the use of 3'-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions. Geochemical Transactions. 2009, 10: 9-10.1186/1467-4866-10-9. Cohn CA, Simon SR, Schoonen MAA: Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals. Particle and Fibre Toxicology. 2008, 5: 9-10.1186/1743-8977-5-9. Cohn CA, Borda MJ, Schoonen MA: RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth Planet Sci Lett. 2004, 225: 271-278. 10.1016/j.epsl.2004.07.007. Cohn CA, Fisher SC, Brownawell BJ, Schoonen MAA: Adenine oxidation by pyrite-generated hydroxyl radicals. Geochemical Transactions. 2010, 11: 8- Pham HT, Kitsuneduka M, Hara J, Suto K, Inoue C: Trichloroethylene transformation by natural mineral pyrite: The deciding role of oxygen. Environ Sci Technol. 2008, 42: 7470-7475. 10.1021/es801310y. Pham HT, Suto K, Inoue C: Trichloroethylene Transformation in Aerobic Pyrite Suspension: Pathways and Kinetic Modeling. Environ Sci Technol. 2009, 43: 6744-6749. 10.1021/es900623u. Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL, Gilmer PJ: Trichloroethylene Biodegradation by a Methane-oxidizing Bacterium. Applied and Environmental Microbiology. 1988, 54: 951-956. Pant P, Pant S: A review: Advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences-China. 2010, 22: 116-126. 10.1016/S1001-0742(09)60082-6. Biondi R, Xia Y, Rossi R, Paolocci N, Ambrosio G, Zweier JL: Detection of hydroxyl radicals by D-phenylalanine hydroxylation: A specific assay for hydroxyl radical generation in biological systems. Analytical Biochemistry. 2001, 290: 138-145. 10.1006/abio.2000.4958. Davies MJ: The oxidative environment and protein damage. Biochimica Et Biophysica Acta-Proteins and Proteomics. 2005, 1703: 93-109. 10.1016/j.bbapap.2004.08.007. Matayatsuk C, Poljak A, Bustamante S, Smythe GA, Kalpravidh RW, Sirankapracha P, Fucharoen S, Wilairat P: Quantitative determination of ortho- and meta-tyrosine as biomarkers of protein oxidative damage in beta-thalassemia. Redox Report. 2007, 12: 219-228. 10.1179/135100007X200272. Matta R, Hanna K, Chiron S: Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Science of the Total Environment. 2007, 385: 242-251. 10.1016/j.scitotenv.2007.06.030. Molnar GA, Nemes V, Biro Z, Ludany A, Wagner Z, Wittmann I: Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Free Radic Res. 2005, 39: 1359-1366. 10.1080/10715760500307107. Molnar GA, Wagner Z, Marko L, Koszegi T, Mohas M, Kocsis B, Matus Z, Wagner L, Tamasko M, Mazak I, Laczy B, Nagy J, Wittmann I: Urinary ortho-tyrosine excretion in diabetes mellitus and renal failure: Evidence for hydroxyl radical production. Kidney International. 2005, 68: 2281-2287. 10.1111/j.1523-1755.2005.00687.x. Cohen G, Yakushin S, Dembiec-Cohen D: Protein L-Dopa as an index of hydroxyl radical attack on protein tyrosine. Analytical Biochemistry. 1998, 263: 232-239. 10.1006/abio.1998.2766. Zegota H, Kolodziejczyk K, Krol M, Krol B: o-Tyrosine hydroxylation by OH center dot radicals. 2,3-DOPA and 2,5-DOPA formation in gamma-irradiated aqueous solution. Radiat Phys Chem. 2005, 72: 25-33. 10.1016/j.radphyschem.2003.11.008. Jayson GG, Stirling DA, Swallow AJ: Pulse-radiolysis and X-radiolysis of 2-mercaptoethanol in aqueous solution. International Journal of Radiation Biology and Related Studies in Physics Chemistry and Medicine. 1971, 19: 143-10.1080/09553007114550191. Buxton GV, Greenstock CL, Helman WP, Ross AB: Critical-review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/.O-) in aqueous-solutions. Journal of Physical and Chemical Reference Data. 1988, 17: 513-886. 10.1063/1.555805. Cohn CA, Pak A, Strongin D, Schoonen MA: Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet. Geochemical Transactions. 2005, 6: 47-51. 10.1186/1467-4866-6-47. Turchi CS, Ollis DF: Photocatalytic degradation of organic-water contaminants - Mechanisms involving hydroxyl radical attack. Journal of Catalysis. 1990, 122: 178-192. 10.1016/0021-9517(90)90269-P. Turchi CS, Ollis DF: Mixed reactant photocatalysis - Intermediates and mutual rate inhibition. Journal of Catalysis. 1989, 119: 483-496. 10.1016/0021-9517(89)90176-0. Albarran G, Bentley J, Schuler RH: Substituent effects in the reaction of OH radicals with aromatics: Toluene. J Phys Chem A. 2003, 107: 7770-7774. 10.1021/jp030550u. Saran M, Summer KH: Assaying for hydroxyl radicals: Hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radic Res. 1999, 31: 429-436. 10.1080/10715769900300991. Thiruvenkatachari R, Kwon TO, Moon IS: Degradation of phthalic acids and benzoic acid from terephthalic acid wastewater by advanced oxidation processes. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng. 2006, 41: 1685-1697. 10.1080/10934520600754136. Wing MR, Stromvall EJ, Lieberman SH: Real-time determination of Dissolved free amino-acids and primary amines in seawater by time-resolved fluorescence. Mar Chem. 1990, 29: 325-338. Sommerville K, Preston T: Characterisation of dissolved combined amino acids in marine waters. Rapid Commun Mass Spectrom. 2001, 15: 1287-1290. 10.1002/rcm.302.