Phenotypic and genomic analysis of Zymomonas mobilis ZM4 mutants with enhanced ethanol tolerance

Biotechnology Reports - Tập 23 - Trang e00328 - 2019
Ofelia E. Carreón-Rodríguez1, Rosa María Gutiérrez-Ríos2, José L. Acosta3, Alfredo Martinez4, Miguel A. Cevallos1
1Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
2Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
3Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad, Blvd., Juan de Dios Bátiz Paredes #250, 81101, Sinaloa, Mexico
4Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico

Tài liệu tham khảo

Antoni, 2007, Biofuels from microbes, Appl. Microbiol. Biotechnol., 77, 23, 10.1007/s00253-007-1163-x Doelle, 1993, Zymomonas mobilis--science and industrial application, Crit. Rev. Biotechnol., 13, 57, 10.3109/07388559309069198 Panesar, 2006, Zymomonas mobilis: An alternative ethanol producer, J. Chem. Technol. Biotechnol., 81, 623, 10.1002/jctb.1448 Rogers, 2007, Zymomonas mobilis for fuel ethanol and higher value products, Adv. Biochem. Eng. Biotechnol., 108, 263 Wackett, 2011, Engineering microbes to produce biofuels, Curr. Opin. Biotechnol., 22, 388, 10.1016/j.copbio.2010.10.010 Reyes, 2011, Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli, PLoS One, 6, 10.1371/journal.pone.0017678 Maiti, 2011, Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm, Appl. Microbiol. Biotechnol., 90, 385, 10.1007/s00253-011-3158-x Yang, 2016, Zymomonas mobilis as a model system for production of biofuels and biochemicals, Microb. Biotechnol., 9, 699, 10.1111/1751-7915.12408 Wang, 2018, Advances and prospects in metabolic engineering of Zymomonas mobilis, Metab. Eng., 50, 57, 10.1016/j.ymben.2018.04.001 Chang, 2018, Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4, Biotechnol. Biofuels, 11, 283, 10.1186/s13068-018-1287-5 Zhang, 2019, New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis, Appl. Microbiol. Biotechnol. Yang, 2013, Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses, PLoS One, 8 Huffer, 2011, Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea, Appl. Environ. Microbiol., 77, 6400, 10.1128/AEM.00694-11 Nicolaou, 2010, A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation, Metab. Eng., 12, 307, 10.1016/j.ymben.2010.03.004 An, 1991, Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein, J. Bacteriol., 173, 5975, 10.1128/jb.173.19.5975-5982.1991 He, 2012, Transcriptome profiling of Zymomonas mobilis under ethanol stress, Biotechnol. Biofuels, 5, 75, 10.1186/1754-6834-5-75 Yang, 2013, Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses, PLoS One, 8 Cho, 2017, Identification and characterization of 5’ untranslated regions (5’UTRs) in Zymomonas mobilis as regulatory biological parts, Front. Microbiol., 8, 2432, 10.3389/fmicb.2017.02432 Cho, 2014, Discovery of ethanol-responsive small RNAs in Zymomonas mobilis, Appl. Environ. Microbiol., 80, 4189, 10.1128/AEM.00429-14 Pallach, 2018, Zymomonas mobilis exopolysaccharide structure and role in high ethanol tolerance, Carbohydr. Polym., 201, 293, 10.1016/j.carbpol.2018.08.072 Bringer, 1985, Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis, Arch. Microbiol., 140, 312, 10.1007/BF00446969 Orencio-Trejo, 2008, Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities, Biotechnol. Biofuels, 1, 8, 10.1186/1754-6834-1-8 Kurtz, 2004, Versatile and open software for comparing large genomes, Genome Biol., 5, R12, 10.1186/gb-2004-5-2-r12 Garay-Arroyo, 2004, Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains, Appl. Microbiol. Biotechnol., 63, 734, 10.1007/s00253-003-1414-4 Kovach, 1995, Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes, Gene, 166, 175, 10.1016/0378-1119(95)00584-1 Simon, 1983, A broad host-range mobilization system for in vivo genetic engineering transposon mutagenesis in Gram negative bacteria, Biol Technol., 1, 784, 10.1038/nbt1183-784 Yang, 2018, Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032, Biotechnol. Biofuels, 11, 125, 10.1186/s13068-018-1116-x Alexopoulos, 2012, ClpP: A structurally dynamic protease regulated by AAA+ proteins, J. Struct. Biol., 179, 202, 10.1016/j.jsb.2012.05.003 Lee, 2009, Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily, Biochemistry, 48, 10162, 10.1021/bi900939w Stanley, 2010, The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae, J. Appl. Microbiol., 109, 13, 10.1111/j.1365-2672.2009.04657.x Snoek, 2016, How do yeast cells become tolerant to high ethanol concentrations?, Curr. Genet., 62, 475, 10.1007/s00294-015-0561-3 Buttke, 1980, Ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vitro, Arch. Biochem. Biophys., 203, 565, 10.1016/0003-9861(80)90213-1 Dombek, 1984, Effects of ethanol on the Escherichia coli plasma membrane, J. Bacteriol., 157, 233, 10.1128/JB.157.1.233-239.1984 Liu, 2009, How microbes tolerate ethanol and butanol, N. Biotechnol., 26, 117, 10.1016/j.nbt.2009.06.984 Yomano, 1998, Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production, J. Ind. Microbiol. Biotechnol., 20, 132, 10.1038/sj.jim.2900496 Tan, 2016, Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis, Microb. Cell Fact., 15, 4, 10.1186/s12934-015-0398-y Osman, 1985, Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4, J. Bacteriol., 164, 173, 10.1128/JB.164.1.173-180.1985 Michel, 1986, Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis, J. Bacteriol., 165, 1040, 10.1128/jb.165.3.1040-1042.1986 Proctor, 2006, Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections, Nat. Rev. Microbiol., 4, 295, 10.1038/nrmicro1384 Jeon, 2012, Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis, Appl. Microbiol. Biotechnol., 93, 2513, 10.1007/s00253-012-3948-9 Zhao, 2014, Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass, Biotechnol. J., 9, 362, 10.1002/biot.201300367 Shao, 2011, Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum, Appl. Microbiol. Biotechnol., 92, 641, 10.1007/s00253-011-3492-z Durfee, 2008, Transcription profiling of the stringent response in Escherichia coli, J. Bacteriol., 190, 1084, 10.1128/JB.01092-07 Gaca, 2015, Many means to a common end: The intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis, J. Bacteriol., 197, 1146, 10.1128/JB.02577-14 Kanjee, 2012, Direct binding targets of the stringent response alarmone (p)ppGpp, Mol. Microbiol., 85, 1029, 10.1111/j.1365-2958.2012.08177.x Steinchen, 2016, The magic dance of the alarmones (p)ppGpp, Mol. Microbiol., 101, 531, 10.1111/mmi.13412 Mogk, 2015, Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation, Front. Mol. Biosci., 2, 22, 10.3389/fmolb.2015.00022 Ekaza, 2001, Characterization of Brucella suis clpB and clpAB mutants and participation of the genes in stress responses, J. Bacteriol., 183, 2677, 10.1128/JB.183.8.2677-2681.2001 Frees, 2014, Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus, Int. J. Med. Microbiol., 304, 142, 10.1016/j.ijmm.2013.11.009 Huang, 2016, ClpP participates in stress tolerance and negatively regulates biofilm formation in Haemophilus parasuis, Vet. Microbiol., 182, 141, 10.1016/j.vetmic.2015.11.020