Phenotype profiling for forensic purposes: Nondestructive potentially on scene attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy of bloodstains
Tài liệu tham khảo
2017
Mistek, 2016, Race differentiation by Raman spectroscopy of a bloodstain for forensic purposes, Anal. Chem., 88, 7453, 10.1021/acs.analchem.6b01173
Khandasammy, 2018, Bloodstains, paintings, and drugs: Raman spectroscopy applications in forensic science, Forensic Chem., 8, 111, 10.1016/j.forc.2018.02.002
Doty, 2018, Raman spectroscopy for forensic purposes: recent applications for serology and gunshot residue analysis, Trends Anal. Chem., 103, 215, 10.1016/j.trac.2017.12.003
Saferstein, 2015
Virkler, 2009, Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene, Forensic Sci. Int., 188, 1, 10.1016/j.forsciint.2009.02.013
Kobilinsky, 2012
Elkins, 2013
Jeffreys, 1985, Hypervariable ‘minisatellite’ regions in human DNA, Nature, 314, 67, 10.1038/314067a0
Huynh, 2015, Forensic identification of gender from fingerprints, Anal. Chem., 87, 11531, 10.1021/acs.analchem.5b03323
Brunelle, 2016, New horizons for ninhydrin: colorimetric determination of gender from fingerprints, Anal. Chem., 88, 2413, 10.1021/acs.analchem.5b04473
Bakshi, 2014, Biocatalytic analysis of biomarkers for forensic identification of gender, Analyst, 139, 559, 10.1039/C3AN02055J
Kramer, 2013, Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American groups, Analyst, 138, 6251, 10.1039/c3an01062g
McLaughlin, 2014, Raman spectroscopy of blood for species identification, Anal. Chem., 86, 11628, 10.1021/ac5026368
Doty, 2018, Differentiation of human blood from animal blood using Raman spectroscopy: a survey of forensically relevant species, Forensic Sci. Int., 282, 204, 10.1016/j.forsciint.2017.11.033
Sikirzhytskaya, 2017, Determining gender by Raman spectroscopy of a bloodstain, Anal. Chem., 89, 1486, 10.1021/acs.analchem.6b02986
Muro, 2016, Sex determination based on Raman spectroscopy of saliva traces for forensic purposes, Anal. Chem., 88, 12489, 10.1021/acs.analchem.6b03988
Muro, 2017, Race differentiation based on Raman spectroscopy of semen traces for forensic purposes, Anal. Chem., 89, 4344, 10.1021/acs.analchem.7b00106
Doty, 2018, Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes, ACS Cent. Sci., 4, 862, 10.1021/acscentsci.8b00198
McLaughlin, 2013, Circumventing substrate interference in the Raman spectroscopic identification of blood stains, Forensic Sci. Int., 231, 157, 10.1016/j.forsciint.2013.04.033
McLaughlin, 2015, In situ identification of semen stains on common substrates via Raman spectroscopy, J. Forensic Sci., 60, 595, 10.1111/1556-4029.12708
Takamura, 2019, Phenotype profiling for forensic purposes: determining donor sex based on Fourier transform infrared spectroscopy of urine traces, Anal. Chem., 91, 6288, 10.1021/acs.analchem.9b01058
Koh, 1980, Selected blood components and urinary B vitamins as related to age and sex of black population in Southwest Mississippi, Am. J. Clin. Nutr., 33, 670, 10.1093/ajcn/33.3.670
Koh, 1980, Comparison of selected blood components by race, sex, and age, Am. J. Clin. Nutr., 33, 1828, 10.1093/ajcn/33.8.1828
Altman, 1961
Rampling, 2007, Compositional properties of blood, 34
Dzieciatkowska, 2015, Plasma QconCATs reveal a gender-specific proteomic signature in apheresis platelet plasma supernatants, J. Proteomics, 120, 1, 10.1016/j.jprot.2015.02.010
Miike, 2010, Proteome profiling reveals gender differences in the composition of human serum, Proteomics, 10, 2678, 10.1002/pmic.200900496
Silliman, 2012, Proteomic analyses of human plasma: Venus versus Mars, Transfusion, 52, 417, 10.1111/j.1537-2995.2011.03316.x
Folkersen, 1981, Circulating levels of pregnancy zone protein: normal range and the influence of age and gender, Clin. Chim. Acta, 110, 139, 10.1016/0009-8981(81)90343-0
Bukowski, 2000, Sex hormone-binding globulin concentration: differences among commercially available methods, Clin. Chem., 46, 1415, 10.1093/clinchem/46.9.1415
Landin-Wilhelmsen, 1994, Clin. Endocrinol., 41, 351, 10.1111/j.1365-2265.1994.tb02556.x
Bachorik, 1997, Apolipoprotein B and AI distributions in the United States, 1988–1991: results of the National Health and Nutrition Examination Survey III (NHANES III), Clin. Chem., 43, 2364, 10.1093/clinchem/43.12.2364
Gordon, 1989, High-density lipoprotein—the clinical implications of recent studies, N. Engl. J. Med., 321, 1311, 10.1056/NEJM198911093211907
Holman, 1979, Effect of sex and age on fatty acid composition of human serum lipids, Am. J. Clin. Nutr., 32, 2390, 10.1093/ajcn/32.12.2390
Winters, 2001, Testosterone, sex hormone-binding globulin, and body composition in young adult African American and Caucasian men, Metabolism, 50, 1242, 10.1053/meta.2001.26714
Srinivasan, 1995, Childhood lipoprotein profiles and implications for adult coronary artery disease: the Bogalusa Heart Study, Am. J. Med. Sci., 310, S62, 10.1097/00000441-199512000-00011
Loughrey, 2000, Race and gender differences in cord blood lipoproteins, Atherosclerosis, 148, 57, 10.1016/S0021-9150(99)00238-5
Morrison, 1979, Black-white differences in plasma lipids and lipoproteins in adults: the Cincinnati Lipid Research Clinic population study, Prev. Med., 8, 34, 10.1016/0091-7435(79)90027-6
Tyroler, 1980, Plasma high-density lipoprotein cholesterol comparisons in black and white populations. The Lipid Research Clinics Program Prevalence Study, Circulation, 62
Mistek, 2019, Toward Locard’s exchange principle: recent developments in forensic trace evidence analysis, Anal. Chem., 91, 637, 10.1021/acs.analchem.8b04704
Zięba-Palus, 2006, Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks, Forensic Sci. Int., 158, 164, 10.1016/j.forsciint.2005.04.044
Sonnex, 2014, Identification of forged Bank of England £20 banknotes using IR spectroscopy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 1158, 10.1016/j.saa.2013.09.115
Zięba-Palus, 2006, Examination of multilayer paint coats by the use of infrared, Raman and XRF spectroscopy for forensic purposes, J. Mol. Struct., 792–793, 286, 10.1016/j.molstruc.2006.03.072
Madariaga, 2012, Identification of dyes and pigments by vibrational spectroscopy, 383
Kalasinsky, 2012, Forensic analysis of hair by infrared spectroscopy, 111
Fredericks, 2012, Forensic analysis of fibres by vibrational spectroscopy, 153
Bueno, 2013, Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination, Anal. Chem., 85, 7287, 10.1021/ac4011843
Mistek, 2018, FT-IR spectroscopy for identification of biological stains for forensic purposes, Spectroscopy, 33, 8
Orphanou, 2015, The detection and discrimination of human body fluids using ATR FT-IR spectroscopy, Forensic Sci. Int., 252, e10, 10.1016/j.forsciint.2015.04.020
Quinn, 2017, The differentiation of menstrual from venous blood and other body fluids on various substrates using ATR FT-IR spectroscopy, J. Forensic Sci., 62, 197, 10.1111/1556-4029.13250
Takamura, 2018, Soft and robust identification of body fluid using Fourier transform infrared spectroscopy and chemometric strategies for forensic analysis, Sci. Rep., 8, 8459, 10.1038/s41598-018-26873-9
Mistek, 2015, Identification of species’ blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy, Anal. Bioanal. Chem., 407, 7435, 10.1007/s00216-015-8909-6
Lin, 2018, Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment, Int. J. Legal Med., 132, 667, 10.1007/s00414-017-1634-2
Lu, 2017, Detection limits for blood on fabrics using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy and derivative processing, Appl. Spectrosc., 71, 839, 10.1177/0003702816654154
Lin, 2017, Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy, Sci. Rep., 7, 13254, 10.1038/s41598-017-13725-1
Takamura, 2017, Spectral mining for discriminating blood origins in the presence of substrate interference via attenuated total reflection Fourier transform infrared spectroscopy: postmortem or antemortem blood?, Anal. Chem., 89, 9797, 10.1021/acs.analchem.7b01756
2018
Humes, 2011
Cohn, 2017
B.M. Wise, N.B. Gallagher, R. Bro, J.M. Shaver, W. Windig, R.S. Koch, PLS_Toolbox 3.5 for use with MATLAB, Eigenvector Research, Inc., Wenatchee, WA, 2005.
Niazi, 2012, Genetic algorithms in chemometrics, J. Chemomet., 26, 345, 10.1002/cem.2426
Pascoal, 2010, Detection of outliers using robust principal component analysis: a simulation study, 499
Varmuza, 2009
Zweig, 1993, Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine, Clin. Chem., 39, 561, 10.1093/clinchem/39.4.561
Robin, 2011, pROC: an open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinf., 12, 77, 10.1186/1471-2105-12-77
Anderssen, 2006, Reducing over-optimism in variable selection by cross-model validation, Chemometr. Intell. Lab. Syst., 84, 69, 10.1016/j.chemolab.2006.04.021
Olsztyńska-Janus, 2012, Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy, Acta Bioeng. Biomech., 14, 101
Baker, 2014, Using Fourier transform IR spectroscopy to analyze biological materials, Nat. Protoc., 9, 1771, 10.1038/nprot.2014.110
Elkins, 2011, Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy, J. Forensic Sci., 56, 1580, 10.1111/j.1556-4029.2011.01870.x
Kanagathara, 2011, FTIR and UV-visible spectral study on normal blood samples, Int. J. Pharm. Bio. Sci., 1, 74
DeLong, 1988, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics, 44, 837, 10.2307/2531595