Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Biểu hiện kiểu hình của bệnh còi xương hạ phosphat ở người lớn
Tóm tắt
Bệnh còi xương hạ phosphat (HR) là một nhóm các rối loạn hiếm gặp do thải trừ phosphat quá mức ở thận. Mục đích của nghiên cứu cắt ngang này trên 38 bệnh nhân HR là để mô tả kiểu hình của bệnh nhân HR người lớn. Hơn nữa, các điểm số nghiêm trọng về xương và nội nha đã được xác định để đánh giá sự khác biệt giới tính có thể có trong mức độ bệnh giữa các bệnh nhân có xác minh di truyền HR liên quan đến nhiễm sắc thể X. So với dữ liệu tham chiếu bình thường, tức là, z = 0, bệnh nhân HR có chiều cao cuối cùng thấp hơn đáng kể, với sự khác biệt trung bình trong điểm số z là −1.9 (KTC 95% −2.4 đến −1.4, P < 0.001). So với các điểm số z cặp của chiều cao cuối cùng, các điểm số z của chiều dài chân thấp hơn đáng kể và các điểm số z của chiều cao ngồi cao hơn đáng kể (P < 0.001), dẫn đến sự không cân xứng như được chỉ ra bởi tỷ lệ chiều cao ngồi cao hơn đáng kể, với sự khác biệt trung bình trong điểm số z là 2.6 (KTC 95% 2.1–3.1, P < 0.001). Các điểm số z của vòng đầu (trung vị 1.4, khoảng −0.4 đến 5.5, P < 0.001) và các điểm số z của mật độ khoáng xương (BMD) của cột sống thắt lưng (trung vị 1.9, khoảng −1.5 đến 8.6, P < 0.001) cao hơn đáng kể so với dữ liệu tham chiếu bình thường. Nguy cơ tương đối (RR) của gãy xương được giảm (RR = 0.34, KTC 95% 0.20–0.57, P < 0.001). Điểm số nghiêm trọng về xương có xu hướng cao hơn ở nam giới so với nữ giới (P = 0.07), và không phát hiện sự khác biệt giới tính trong mức độ nghiêm trọng nội nha. Kết luận, bệnh nhân HR người lớn có đặc điểm là chiều cao khiêm tốn và bị mất cân đối. Họ có BMD cột sống thắt lưng cao hơn và nguy cơ gãy xương giảm. Chúng tôi nhận thấy xu hướng nam giới bị ảnh hưởng nặng nề hơn so với nữ giới.
Từ khóa
#bệnh còi xương #hạ phosphat #bệnh nhân người lớn #chiều cao cuối #mật độ khoáng xươngTài liệu tham khảo
Bastepe M, Juppner H (2008) Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation. Rev Endocr Metab Disord 9:171–180
Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK (2009) Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 160:491–497
Drezner MK (2003) Hypophosphatemic rickets. Endocr Dev 6:126–155
Berndt M, Ehrich JH, Lazovic D, Zimmermann J, Hillmann G, Kayser C, Prokop M, Schirg E, Siegert B, Wolff G, Brodehl J (1996) Clinical course of hypophosphatemic rickets in 23 adults. Clin Nephrol 45:33–41
Stickler GB, Morgenstern BZ (1989) Hypophosphataemic rickets: final height and clinical symptoms in adults. Lancet 2:902–905
Sullivan W, Carpenter T, Glorieux F, Travers R, Insogna K (1992) A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 75:879–885
Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP (1989) X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine 68:336–352
Hardy DC, Murphy WA, Siegel BA, Reid IR, Whyte MP (1989) X-linked hypophosphatemia in adults: prevalence of skeletal radiographic and scintigraphic features. Radiology 171:403–414
Whyte MP, Schranck FW, Armamento-Villareal R (1996) X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J Clin Endocrinol Metab 81:4075–4080
Reid IR, Murphy WA, Hardy DC, Teitelbaum SL, Bergfeld MA, Whyte MP (1991) X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. Am J Med 90:63–69
Cho HY, Lee BH, Kang JH, Ha IS, Cheong HI, Choi Y (2005) A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatr Res 58:329–333
Frymoyer JW, Hodgkin W (1977) Adult-onset vitamin D-resistant hypophosphatemic osteomalacia. A possible variant of vitamin D-resistant rickets. J Bone Joint Surg Am 59:101–106
Glorieux FH, Scriver CR, Reade TM, Goldman H, Roseborough A (1972) Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. N Engl J Med 287:481–487
Rosenthall L (1993) DEXA bone densitometry measurements in adults with X-linked hypophosphatemia. Clin Nucl Med 18:564–566
Winters RW, Graham JB, Williams TF, McFalls VW, Burnett CH (1957) A genetic study of familial hypophosphatemia and vitamin D resistant rickets. Trans Assoc Am Physicians 70:234–242
Shields ED, Scriver CR, Reade T, Fujiwara TM, Morgan K, Ciampi A, Schwartz S (1990) X-linked hypophosphatemia: the mutant gene is expressed in teeth as well as in kidney. Am J Hum Genet 46:434–442
Glorieux F, Scriver CR (1972) Loss of a parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphatemia. Science 175:997–1000
Goji K, Ozaki K, Sadewa AH, Nishio H, Matsuo M (2006) Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait. J Clin Endocrinol Metab 91:365–370
Lloyd SE, Pearce SH, Gunther W, Kawaguchi H, Igarashi T, Jentsch TJ, Thakker RV (1997) Idiopathic low molecular weight proteinuria associated with hypercalciuric nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5). J Clin Invest 99:967–974
Andersen E, Hutchings B, Jansen J, Nyholm M (1982) Heights and weights of Danish children [in Danish]. Ugeskr Laeger 144:1760–1765
Hertel NT, Scheike T, Juul A, Main KM, Holm K, Bach-Mortensen N, Skakkebaek NE, Muller JR (1995) Body proportions of Danish children. Curves for sitting height ratio, subischial length and arm span [in Danish]. Ugeskr Laeger 157:6876–6881
Bushby KM, Cole T, Matthews JN, Goodship JA (1992) Centiles for adult head circumference. Arch Dis Child 67:1286–1287
Cahuzac JP, Vardon D, de Sales GJ (1995) Development of the clinical tibiofemoral angle in normal adolescents. A study of 427 normal subjects from 10 to 16 years of age. J Bone Joint Surg Br 77:729–732
Vestergaard P (2003) Fracture risk secondary to disease. Thesis, Faellestrykkeriet for Sundhedsvidenskab, Aarhus
Hojskov CS, Heickendorff L, Moller HJ (2010) High-throughput liquid–liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Clin Chim Acta 411:114–116
Fraser WD, Durham BH, Berry JL, Mawer EB (1997) Measurement of plasma 1,25 dihydroxyvitamin D using a novel immunoextraction technique and immunoassay with iodine labelled vitamin D tracer. Ann Clin Biochem 34:632–637
Gomez B Jr, Ardakani S, Ju J, Jenkins D, Cerelli MJ, Daniloff GY, Kung VT (1995) Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem 41:1560–1566
Stark H, Eisenstein B, Tieder M, Rachmel A, Alpert G (1986) Direct measurement of TP/GFR: a simple and reliable parameter of renal phosphate handling. Nephron 44:125–128
Burnett SA, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS (2006) Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 21:1187–1196
Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD (2008) Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol 3:658–664
Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149
Rabe-Hesketh S, Skrondal A (1999) Practical statistics for medical research. Chapman & Hall, London
Kirkevang LL (2001) Periapical and endodontic status in Danish populations. Thesis, Royal Dental College, University of Aarhus
Holm IA, Nelson AE, Robinson BG, Mason RS, Marsh DJ, Cowell CT, Carpenter TO (2001) Mutational analysis and genotype–phenotype correlation of the PHEX gene in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 86:3889–3899
Song HR, Park JW, Cho DY, Yang JH, Yoon HR, Jung SC (2007) PHEX gene mutations and genotype–phenotype analysis of Korean patients with hypophosphatemic rickets. J Korean Med Sci 22:981–986
McNair SL, Stickler GB (1969) Growth in familial hypophosphatemic vitamin-D-resistant rickets. N Engl J Med 281:512–516
Marie PJ, Glorieux FH (1982) Bone histomorphometry in asymptomatic adults with hereditary hypophosphatemic vitamin D-resistant osteomalacia. Metab Bone Dis Relat Res 4:249–253
Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259
Hochberg Z (2003) Rickets—past and present. Introduction. Endocr Dev 6:1–13
Bishop N (1999) Rickets today—children still need milk and sunshine. N Engl J Med 341:602–604
Sundhedsstyrelsen (2005) Caesarean section on maternal request [on Danish]. Sundhedsstyrelsen, Copenhagen
Bradbury PG, Brenton DP, Stern GM (1987) Neurological involvement in X-linked hypophosphataemic rickets. J Neurol Neurosurg Psychiatry 50:810–812
Dunlop DJ, Stirling AJ (1996) Thoracic spinal cord compression caused by hypophosphataemic rickets: a case report and review of the world literature. Eur Spine J 5:272–274
Soehle M, Casey AT (2002) Cervical spinal cord compression attributable to a calcified intervertebral disc in a patient with X-linked hypophosphatemic rickets: case report and review of the literature. Neurosurgery 51:239–242
Velan GJ, Currier BL, Clarke BL, Yaszemski MJ (2001) Ossification of the posterior longitudinal ligament in vitamin D-resistant rickets: case report and review of the literature. Spine 26:590–593
Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabedian M (2003) Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 142:324–331
Baroncelli GI, Angiolini M, Ninni E, Galli V, Saggese R, Giuca MR (2006) Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur J Paediatr Dent 7:61–66
Goodman JR, Gelbier MJ, Bennett JH, Winter GB (1998) Dental problems associated with hypophosphataemic vitamin D resistant rickets. Int J Paediatr Dent 8:19–28
McWhorter AG, Seale NS (1991) Prevalence of dental abscess in a population of children with vitamin D-resistant rickets. Pediatr Dent 13:91–96
Abe K, Ooshima T, Lily TS, Yasufuku Y, Sobue S (1988) Structural deformities of deciduous teeth in patients with hypophosphatemic vitamin D-resistant rickets. Oral Surg Oral Med Oral Pathol 65:191–198
Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M (2007) Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis 13:482–489
Gaucher C, Boukpessi T, Septier D, Jehan F, Rowe PS, Garabedian M, Goldberg M, Chaussain-Miller C (2009) Dentin noncollagenous matrix proteins in familial hypophosphatemic rickets. Cells Tissues Organs 189:219–223
Qiu ZQ, Travers R, Rauch F, Glorieux FH, Scriver CR, Tenenhouse HS (2004) Effect of gene dose and parental origin on bone histomorphometry in X-linked Hyp mice. Bone 34:134–139