Phenomena Identification and Ranking Table (PIRT) study for metallic structural materials for advanced High-Temperature reactor
Tóm tắt
Từ khóa
Tài liệu tham khảo
Delpech, 2010, Molten fluorides for nuclear applications, Mater. Today, 13, 34, 10.1016/S1369-7021(10)70222-4
Gibilaro, 2015, A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control, Electrochimica Acta, 160, 209, 10.1016/j.electacta.2015.01.142
Holcomb, 2013
Ignatiev, 2013, Alloys compatibility in molten salt fluorides: Kurchatov Institute related experience, J. Nucl. Mater., 441, 592, 10.1016/j.jnucmat.2013.05.007
Koger, 1972
Koger, 1973, Fluoride salt corrosion and mass transfer in high temperature dynamic systems, CORROSION, 29, 115, 10.5006/0010-9312-29.3.115
Koger, 1974, Corrosion product deposition in molten fluoride salt systems, CORROSION, 30, 125, 10.5006/0010-9312-30.4.125
Koger, 1974, Chromium Depletion and Void Formation in Fe-Ni-Cr Alloys During Molten Salt Corrosion and Related Processes, 245
Koger, 1968, Kinetic behavior of chromium and iron in some iron- and nickel-base alloys exposed to fluoride salts, Jom-J Min. Met. Mat. S, 20, A26
Kondo, 2009, Metallurgical study on corrosion of austenitic steels in molten salt LiF-BeF2 (Flibe), J. Nucl. Mater., 386–388, 685, 10.1016/j.jnucmat.2008.12.317
Kondo, 2009, High performance corrosion resistance of nickel-based alloys in molten salt flibe, Fusion Sci. Technol., 56, 190, 10.13182/FST09-A8900
Lin, 2018, Phenomena Identification and Ranking Table Study for Thermal Hydraulics for Advanced High Temperature Reactor, Submitted for Publication to Ann. Nucl. Energy
Liu, 2013, Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques, J. Nucl. Mater., 440, 124, 10.1016/j.jnucmat.2013.04.056
McCoy, 1972
Muralidharan, 2011
Olson, 2009, Materials corrosion in molten LiF-NaF-KF salt, Journal of Fluorine Chemistry, 10.1016/j.jfluchem.2008.05.008
Rahnema, 2018, Phenomena, Gaps, and Issues for Neutronics Modeling and Simulation of FHRs, Ann. Nucl. Energy, 123, 172, 10.1016/j.anucene.2018.08.035
W.J. Ren, G. Muralidharan, D.F. Wilson, D.E. Holcomb, “Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications”, in: Proceedings of the Asme Pressure Vessels and Piping Conference, Pvp 2011, Vol 6, a and B, 725–736, 2012.
Sellers, 2014, Corrosion of 316l stainless steel alloy and hastelloy-n superalloy in molten eutectic Lif-naf-kf salt and interaction with graphite, Nucl. Technol., 188, 192, 10.13182/NT13-95
Serp, 2014, The molten salt reactor (MSR) in generation IV: Overview and perspectives, Prog. Nucl. Energy, 77, 308, 10.1016/j.pnucene.2014.02.014
Singh, 2017
M.S. Sohal, M.A. Ebner, P. Sabharwall, P. Sharpe, Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties, Idaho National Laboratory, INL/EXT-10-18297, 2013.
Varma, 2012
Wang, 2016, Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li, Na, K)F, Corros. Sci., 103, 268, 10.1016/j.corsci.2015.11.032
D.F. Williams, L.M. Toth, K.T. Clarno, Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR), Oak Ridge National Laboratory, ORNL/TM-2006/12, 2006.
Ye, 2016, The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS, Corros. Sci., 106, 249, 10.1016/j.corsci.2016.02.010
Zheng, 2015, Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt, J. Nucl. Materi., 461, 143, 10.1016/j.jnucmat.2015.03.004