Phenolic fingerprint of the seagrassPosidonia oceanicafrom four locations in the Mediterranean Sea: first evidence for the large predominance of chicoric acid

Botanica Marina - Tập 58 Số 5 - Trang 379-391 - 2015
Micheline Grignon‐Dubois1, Bernadette Rezzonico1
1University of Bordeaux 1, EPOC, UMR 5805, F-33400 Talence, France

Tóm tắt

Abstract

The phenolic fingerprint of the leaves ofPosidonia oceanicacollected from four different Mediterranean Sea regions was determined using a panel of analytical techniques. It was found to be dominated by caffeic tartrates, along with low amounts of coumaric and ferulic tartrates. Chicoric acid (CA) was unambiguously identified as the major phenolic compound, regardless of the sample or collection site. Caftaric acid (CAF) was the second most abundant phenolic, but in much lower average concentrations. These results contrast with most of the previous works, in which CA was not even mentioned. The dramatic influence of extract handling, as well as the importance of choosing the adequate criteria of identity to standards, was demonstrated. These results show the importance of analyzing the crude extract to avoid some of the major pitfalls in determining the phenolic fingerprints. This is the first report to identify and quantify CAF in the Posidoniaceae and to identify CA as the dominant phenolic inPosidonialeaves. The large accumulation of CA in both living (10.12–12.78 mg g-1dw) and detrital leaves (2.49–12.11 mg g-1dw) across large geographical scales is noteworthy. The lack of significant concentrations of flavonoids contrasts with other seagrass genera. Importantly, the phenolic signature ofP. oceanicashows significant similarities to those ofCymodocea nodosaandSyringodium filiforme, both belonging to the Cymodoceaceae. These results are discussed in terms of metabolic pathways and phylogenetic relationships.

Từ khóa


Tài liệu tham khảo

Achamlale, S., B. Rezzonico and M. Grignon-Dubois. 2009a. Rosmarinic acid from beach waste: isolation and HPLC quantification in Zostera detritus from Arcachon lagoon. Food Chem.113: 878–883.10.1016/j.foodchem.2008.07.040

Achamlale, S., B. Rezzonico and M. Grignon-Dubois. 2009b. Evaluation of detritus as a potential new source of Zosteric acid. J. Appl. Phycol.21: 347–352.10.1007/s10811-008-9375-8

Agostini, S., J.M. Desjobert and G. Pergent. 1998. Distribution of phenolic compounds in the seagrass Posidonia oceanica. Phytochemistry48: 611–617.10.1016/S0031-9422(97)01118-7

Aires, T., N. Marbà, R.L. Cunha, G.A. Kendrick, D.I. Walker, E.A. Serrão, C.M. Duarte and S. Arnaud-Haond. 2011. Evolutionary history of the seagrass genus Posidonia. Mar. Ecol. Prog. Ser.421: 117–130.10.3354/meps08879

Arnold, T. and N.M. Targett. 2002. Marine tannins: the importance of a mechanistic framework for predicting ecological roles. J. Chem. Ecol.28: 1919–1934.10.1023/A:1020737609151

Becerro, M.A., A. Vergés, T. Alcoverro and J. Romero. 2008. Selection of multiple seagrass indicators for environmental biomonitoring. Mar. Ecol. Prog. Ser.361: 93–109.10.3354/meps07358

Bitam, F., M.L. Ciavatta, M. Carbone, E. Manzo, E. Mollo and M. Gavagnin. 2010. Chemical analysis of flavonoid constituents of the seagrass Halophila stipulacea: first finding of malonylated derivatives in marine phanerogams. Biochem. Syst. Ecol.38: 686–690.10.1016/j.bse.2010.04.007

Bucalossi, D., C. Leonzio, S. Casini, M.C. Fossi, L. Marsili, S. Ancora, W. Wang and M. Scali. 2006. Application of a suite of biomarkers in Posidonia oceanica (L.) Delile to assess the ecotoxicological impact on the coastal environment. Mar. Environ. Res.62: 327–331.10.1016/j.marenvres.2006.04.014

Cannac, M., L. Ferrat, C. Pergent-Martini, G. Pergent and V. Pasqualini. 2006. Effects of fish farming on flavonoids in Posidonia oceanica. Sci. Total Environ.370: 91–98.10.1016/j.scitotenv.2006.07.016

Cariello, L., L. Zanetti and S. De Stefano. 1979. Posidonia ecosystem – V. Phenolic compounds from marine phanerogames, Cymodocea nodosa and Posidonia oceanica. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 62: 159–161.

Catalano, L., I. Franco, M. De Nobili and L. Leita. 1999. Polyphenols in olive mill waste waters and their purification plant effluents: a comparison of the Folin-Ciocalteau and HPLC methods. Agrochimica 43: 193–205.

Cheynier, V., G. Comte, K.M. Davies, V. Lattanzio and S. Martens. 2013. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem.72: 1–20.10.1016/j.plaphy.2013.05.009

Cozza, R., A. Chiappetta, M. Petrarulo, A. Salimonti, F. Rende, M.B. Bitonti and A.M. Innocenti. 2004. Cytophysiological features of Posidonia oceanica as putative markers of environmental conditions. Chem. Ecol.20: 215–223.10.1080/02757540410001689777

Cuny, P., L. Serve, H. Jupin and C.F. Boudouresque. 1995. Water soluble phenolic compounds of the marine phanerogam Posidonia oceanica in a Mediterranean area colonised by the introduced chlorophyte Caulerpa taxifolia. Aquat. Bot.52: 237–242.10.1016/0304-3770(95)00504-8

Dumay, O., J. Costa, J.M. Desjober and G. Pergent. 2004. Variations in the concentration of phenolic compounds in the seagrass Posidonia oceanica under conditions of competition. Phytochemistry 65: 3211–3220.10.1016/j.phytochem.2004.09.003

Ferrat, L., C. Pergent-Martini and M. Roméo. 2003. Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat. Toxicol.65: 187–204.10.1016/S0166-445X(03)00133-4

Glombitza, K.W. 1970. Antimicrobial components of algae. 2. Occurrence of acrylic acid in different marine algae. Planta Med.18: 210–221.10.1055/s-0028-1099768

Grignon-Dubois, M. and B. Rezzonico. 2012. First phytochemical evidence of chemotypes for the seagrass Zostera noltii. Plants 1: 27–38.10.3390/plants1010027

Grignon-Dubois, M. and B. Rezzonico. 2013. The economic potential of beach-cast seagrass – Cymodocea nodosa: a promising renewable source of chicoric acid. Bot. Mar.56: 303–311.10.1515/bot-2013-0029

Harborne, J.B. 1988. The flavonoids: advances in research since 1980. Chapman and Hall, New York.

Harrison, P.G. 1982. Control of microbial growth and of amphipod grazing by water-soluble compounds from leaves of Zostera marina. Mar. Biol.67: 225–230.10.1007/BF00401288

Harrison, P.G. 1989. Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat. Bot.23: 263–288.

Haznedaroglu, M.Z. and U. Zeybek. 2007. HPLC determination of chicoric acid in leaves of Posidonia oceanica. Pharm. Biol.45: 745–748.10.1080/13880200701585717

Heck, K.L. and J.F. Valentine. 2006. Plant-herbivore interactions in seagrass meadows. J. Exp. Mar. Biol. Ecol.330: 420–436.10.1016/j.jembe.2005.12.044

Heglmeier, A. and C. Zidorn. 2010. Secondary metabolites of Posidonia oceanica (Posidoniaceae). Biochem. Syst. Ecol.38: 1–7.10.1016/j.bse.2010.07.001

INA. Institute for Neutraceutical Advancement (1991) Ref: Economic and Medicinal Plant Research, vol 5, 1991, pp 253–321, www.nsf.org/business/ina/echinacea.asp?program=INA. INA Phenolics in Echinacea by HPLC. http://www.nutraceuticalinstitute.com/methods/echinacea.html May, 2000.

Jensen, P.R., K.M. Jenkins, D. Porter and W. Fenical. 1998. Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against zoosporic fungi. Appl. Environ. Microbiol.64: 1490–1496.10.1128/AEM.64.4.1490-1496.1998

Kesraoui, O., M. Nejib Marzouki, T. Maugard and F. Limam. 2011. In vitro evaluation of antioxidant activities of free and bound phenolic compounds from Posidonia oceanica (l.) Delile leaves. Afr. J. Biotechnol. 10: 3176–3185.10.5897/AJB10.847

Klap, V.A., M.A. Hemminga and J.J. Boon. 2000. Retention of lignin in seagrasses: angiosperms that returned to the sea. MEPS 194: 1–11.10.3354/meps194001

Kolb, C.A., M.A. Käser, J. Kopecký, G. Zotz, M. Riederer and E.E. Pfündel. 2001. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol.127: 863–875.10.1104/pp.010373

Laabir, M., M. Grignon-Dubois, E. Masseret, B. Rezzonico, G. Soteras, M. Rouquette, F. Rieuvilleneuve and P. Cecchi. 2013. Algicidal effects of Zostera marina L. and Zostera noltii Hornem. extracts on the neuro-toxic bloom-forming dinoflagellate Alexandrium catenella. Aquat. Bot.111: 16–25.10.1016/j.aquabot.2013.07.010

Larkum, A.W., E.A. Drew and P.J. Ralph. 2006. Photosynthesis in seagrasses. In: (A.W. Larkum, R.J. Orth and C.M. Duarte, eds.) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, The Netherlands. pp. 340.

Lee, J. and C.F. Scagel. 2013. Chicoric acid: chemistry, distribution, and production. FCHEM1: 00040.

Les, D.H. and N.P. Tippery. 2013. In time and with water...the systematics of alismatid monocotyledons. In: (P. Wilkin and S. J. Mayo, eds.) Early events in monocot evolution. Cambridge University Press, Cambridge, England. © The Systematics Association, chapter 6. pp. 118–164.

Lucas, C., T. Thangaradjou and J. Papenbrock. 2012. Development of a DNA barcoding system for seagrasses: successful but not simple. PLos One7: e29987. doi: 10.1371/journal.pone.0029987. Epub 2012 Jan 11.10.1371/journal.pone.0029987

Mateo, M.A., J.L. Sanchez-Lizaso and J. Romero. 2003. Posidonia oceanica ‘banquettes’: a preliminary assessment of the relevance for meadow carbon and nutrients budget. Estuar. Coast. Shelf Sci.56: 85–90.10.1016/S0272-7714(02)00123-3

Meng, Y., A.J. Krzysiak, M.J. Durako, J.I. Kunzelman and J.L.C. Wright. 2008. Flavones and flavone glycosides from Halophila johnsonii. Phytochemistry69: 2603–2608.10.1016/j.phytochem.2008.07.007

Montefalcone, M. 2009. Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica: a review. Ecol. Indic.9: 595–604.10.1016/j.ecolind.2008.09.013

Mozetič, B., I. Tomažič, A. Škvarč and P. Trebše. 2006. Determination of polyphenols in white grape berries cv. Rebula. Acta Chim. Slov.53: 58–64.

Nuissier, G., B. Rezzonico and M. Grignon-Dubois. 2010. Chicoric acid from Syringodium filiforme. Food Chem.120: 783–788.10.1016/j.foodchem.2009.11.010

Pergent, G., C.F. Boudouresque, O. Dumay, C. Pergent-Martini and S. Wyllie-Echeverria. 2008. Competition between the invasive macrophyte Caulerpa taxifolia and the seagrass Posidoniaoceanica: Contrasting strategies. BMC Ecol. 8: 20. doi:10.1186/1472-6785-8-20.10.1186/1472-6785-8-20

Pergent-Martini, C., V. Leoni, V. Pasqualini, G.D. Ardizzone, E. Balestri, R. Bedini, A. Belluscio, T. Belsher, J. Borg, C.F. Boudouresque, S. Boumaza, J.M. Bouquegneau, M.C. Buia, S. Calvo, J. Cebrian, E. Charbonnel, F. Cinelli, A. Cossu, G. Di Maida and B. Dural. 2005. Descriptors of Posidoniaoceanica meadows: use and application. Ecol. Indic.5: 213–230.10.1016/j.ecolind.2005.02.004

Procaccini, G., M.C. Buia, M.C. Gambi, M. Perez, G. Pergent, C. Pergent-Martini and J. Romero. 2003. The seagrasses of the Western Mediterranenan. In: (E.P. Green and F.T. Short, eds.) World atlas of seagrasses. University of California Press, Oakland, CA, USA. pp. 48–58.

Rowley, D.C., M.S. Hansen, D. Rhodes, C.A. Sotriffer, H. Ni, J.A. McCammon, F.D. Bushman and W. Fenical. 2002. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg. Med. Chem.10: 3619–3625.10.1016/S0968-0896(02)00241-9

Sandoval-Gil, J.M., L. Marín-Guirao and J.M. Ruiz. 2012. Tolerance of Mediterranean seagrasses (Posidonia oceanica and Cymodocea nodosa) to hypersaline stress: water relations and osmolyte concentrations. Mar. Biol.159: 1129–1141.10.1007/s00227-012-1892-y

Sieg, R.D. and J. Kubanek. 2013. Chemical ecology of marine angiosperms: opportunities at the interface of marine and terrestrial systems. J. Chem. Ecol.39: 687–711.10.1007/s10886-013-0297-9

Steele, L. and J.F. Valentine. 2012. Idiosyncratic responses of seagrass phenolic production following sea urchin grazing. Mar. Ecol. Prog. Ser.466: 81–92.10.3354/meps09921

Takagi, M., S. Funahashi, K. Ohta and T. Nakabayashi. 1979. Flavonoids in the sea-grass Phyllospadix japonica. Agric. Biol. Chem.43: 2417–2418.10.1080/00021369.1979.10863833

Todd, J., R.C. Zimmerman, P. Crews and R.S. Alberte. 1993. The antifouling activity of natural and synthetic phenolic acid sulfate esters. Phytochemistry34: 401–404.10.1016/0031-9422(93)80017-M

Van Alstyne, K.L., K.N. Pelletreau and A. Kirby. 2009. Nutritional preferences override chemical defenses in determining food choice by a generalist herbivore, Littorina sitkana. J. Exp. Mar. Biol. Ecol.379: 85–91.10.1016/j.jembe.2009.08.002

Vergeer, L.H.T. and A. Develi. 1997. Phenolic acids in healthy and infected leaves Zostera marina and their growth-limiting properties towards Labyrinthula zosterae. Aquat. Bot. 58: 65–72.10.1016/S0304-3770(96)01115-1

Vergés, A., M.A. Becerro, T. Alcoverro and J. Romero. 2007a. Experimental evidence of chemical deterrence against multiple herbivores in the seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser.343: 107–114.10.3354/meps06885

Vergés, A., M.A. Becerro, T. Alcoverro and J. Romero. 2007b. Variation in multiple traits of vegetative and reproductive seagrass tissues influences plant-herbivore interactions. Oecologia151: 675–686.10.1007/s00442-006-0606-x

Vergés, A., M.A. Becerro, T. Alcoverro and J. Romero. 2008. Compensation and resistance to herbivory in seagrasses: induced responses to simulated consumption by fish. Oecologia 155: 751–760.10.1007/s00442-007-0943-4

Viso, A.C., D. Pesando, P. Bernard and J.C. Marty. 1993. Lipid components of the Mediterranean seagrass Posidonia oceanica. Phytochemistry34: 381–387.10.1016/0031-9422(93)80012-H