Phenolic compounds induced by Bemisia tabaci and Trialeurodes vaporariorum in Nicotiana tabacum L. and their relationship with the salicylic acid signaling pathway

Arthropod-Plant Interactions - Tập 11 - Trang 659-667 - 2017
Xiao Zhang1,2, Xia Sun1, Haipeng Zhao1, Ming Xue1, Dong Wang2
1College of Plant Protection, Shandong Agricultural University, Tai’an, China
2Ji’nan Center for Disease Control and Prevention, Ji’nan, China

Tóm tắt

Changes in the levels of secondary compounds can trigger plant defenses. To identify phenolic compounds induced by Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) in tobacco (Nicotiana tobacco L.), the content changes of 11 phenolic compounds in plants infested by B. tabaci MEAM1 or Trialeurodes vaporariorum were compared. The chlorogenic acid, catechin, caffeic acid, p-coumaric acid, rutin, and ferulic acid contents in B. tabaci MEAM1-infested tobacco plants increased significantly, having temporal and spatial effects, compared with uninfested control and T. vaporariorum infested plants. The contents were 4.10, 2.84, 2.25, 3.81, 1.46, and 1.91 times higher, respectively, than those in the control. However, a T. vaporariorum nymphal infestation just caused smaller chlorogenic acid, catechin, caffeic acid, and rutin contents increase, which were 2.33, 2.13, 1.59, and 3.19 times higher, respectively, than those in the control. In B. tabaci MEAM1 third-instar nymph-infested plants, chlorogenic acid, catechin, caffeic acid, and rutin increased more significantly in systemic than in local leaves. Salicylate-deficient plants inhibited the induction of the content of 10 phenolic compounds, but not caffeic acid, after a B. tabaci MEAM1 nymphal infestation. Thus, the elevated levels of phenolic compounds induced by B. tabaci MEAM1 were correlated with the salicylic acid signaling pathway and induced the responses of defense-related phenolic compounds.

Tài liệu tham khảo

Alon M, Elbaz M, Ben-Zvi MM, Feldmesser E, Vainstein A, et al. (2012) Insights into the transcriptomics of polyphagy: Bemisia tabaci adaptability to phenylpropanoids involves coordinated expression of defense and metabolic genes. Insect Biochem Molec 42:251–263. doi:10.1016/j.ibmb.2011.12.007 Ateyyat M, Abu-Romman S, Abu-Darwish M, Ghabeish I (2012) Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald.). J Agr Sci 4:227. doi:10.5539/jas.v4n2p227 Baptist F, Zinger L, Clement JC, Gallet C, Guillemin R et al (2008) Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach. Environ Microbiol 10:799–809. doi:10.1111/j.1462-2920.2007.01504.x Barrett LG, Heil M (2012) Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends Plant Sci 17:282–292. doi:10.1016/j.tplants.2012.02.009 Bergelson JM, Lawton JH (1988) Does foliage damage influence predation on the insect herbivores of birch? Ecology 69:434–445. doi:10.2307/1940442 Bryant JP, Reichardt P, Clausen T, Werner R (1993) Effects of mineral nutrition on delayed inducible resistance in Alaska paper birch. Ecology 74:2072–2084. doi:10.2307/1940853 Calatayud PA, Rahbé Y, Delobel B, Khuong-Huu F, Tertuliano M, et al. (1994) Influence of secondary compounds in the phloem sap of cassava on expression of antibiosis towards the mealybug Phenacoccus manihoti. Entomol Exp Appl 72:47–57. doi:10.1111/j.1570-7458.1994.tb01801.x Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, et al. (2006) Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64–72. doi:10.1016/j.postharvbio.2005.12.017 Chen Y, Ruberson JR, Olson DM (2008) Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol Exp Appl 126:244–255. doi:10.1111/j.1570-7458.2007.00662.x Close D, Mcarthur C (2002) Rethinking the role of many plant phenolics-protection from photodamage not herbivores? Oikos 99:166–172. doi:10.1034/j.1600-0706.2002.990117.x Creelman RA, Bell E, Mullet JE (1992) Involvement of a lipoxygenase-like enzyme in abscisic acid biosynthesis. Plant Physiol 99:1258–1260. doi:10.1104/pp.99.3.1258 Cui H, Sun Y, Su J, Ren Q, Li C, et al. (2012) Elevated O3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Interact 6:425–437. doi:10.1007/s11829-012-9189-0 Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181. doi:10.1016/j.copbio.2011.08.007 Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104. doi:10.1016/j.jbiotec.2010.05.009 Estrada-Hernandez MG, Valenzuela-Soto JH, Ibarra-Laclette E, Delano-Frier JP (2009) Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect’s life cycle. Physiol Plant 137:44–60. doi:10.1111/j.1399-3054.2009.01260.x Faeth SH (1986) Indirect interactions between temporally separated herbivores mediated by the host plant. Ecology 67:479–494. doi:10.2307/1938591 Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161. doi:10.1016/j.copbio.2004.01.008 Giorgi A, Madeo M, Baumgärtner J, Lozzia GC (2012) Chemometric analysis of the secondary metabolite profile of Yarrow (Achillea collina Becker ex Rchb.) affected by phloem feeding Myzus persicae Sulzer aphids. J Entomol Res Soc 42:91–102. doi:10.4081/jear.2010.91 Goławska S, Łukasik I (2009) Acceptance of low-saponin lines of alfalfa with varied phenolic concentrations by pea aphid (Homoptera: Aphididae). Biologia 64:377–382. doi:10.2478/s11756-009-0051-5 Harborne J (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27: 335–367. doi:10.1016/S0305-1978(98)00095-7 Haviola S, Kapari L, Ossipov V, Rantala MJ, Ruuhola T et al (2007) Foliar phenolics are differently associated with Epirrita autumnata growth and immunocompetence. J Chem Ecol 33:1013–1023. doi:10.1007/s10886-007-9271-8 Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66. doi:10.1146/annurev.arplant.59.032607.092825 Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994. doi:10.1111/j.1461-0248.2007.01093.x Karban R, Baldwin I (1997) Induced responses to herbivory. University of Chicago Press, Chicago Kaur H, Heinzel N, Schottner M, Baldwin IT, Galis I (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152:1731–1747. doi:10.1104/pp.109.151738 Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865. doi:10.1104/pp.106.090662 Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2009) Identification of chlorogenic acid as a resistance factor for thrips in Chrysanthemum. Plant Physiol 150:1567–1575. doi:10.1104/pp.109.138131 Leszczynski B, Tjallingii W, Dixon AFG, Swiderski R (1995) Effect of methoxyphenols on grain aphid feeding behaviour. Entomol Exp Appl 76:157–162. doi:10.1111/j.1570-7458.1995.tb01957.x Li R, Weldegergis BT, Li J, Jung C, Qu J et al (2014) Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26:4991–5008. doi:10.1105/tpc.114.133181 López-Orenes A, Martínez-Moreno JM, Calderón AA, Ferrer MA (2013) Changes in phenolic metabolism in salicylic acid-treated shoots of Cistus heterophyllus. Plant Cell Tiss Org. doi:10.1007/s11240-012-0281-z Luan JB, Yao DM, Zhang T, Walling LL, Yang M et al (2013) Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett 16:390–398. doi:10.1111/ele.12055 Moctezuma C, Hammerbacher A, Heil M, Gershenzon J, Mendez-Alonzo R et al (2014) Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides. J Chem Ecol 40:458–467. doi:10.1007/s10886-014-0431-3 Roslin T, Salminen J (2008) Specialization pays off: contrasting effects of two types of tannins on oak specialist and generalist moth species. Oikos 117:1560–1568. doi:10.1111/j.0030-1299.2008.16725.x Ruuhola T, Salminen JP, Haviola S, Yang S, Rantala MJ (2007) Immunological memory of mountain birches: effects of phenolics on performance of the autumnal moth depend on herbivory history of trees. J Chem Ecol 33:1160–1176. doi:10.1007/s10886-007-9308-z Schowalter TD (2006) Insect ecology: an ecosystem approach. Academic Press, Cambridge Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845–851. doi:10.1104/pp.107.112490 Sheen SJ (1974) Polyphenol oxidation by leaf peroxidases in Nicotiana. Bot Gaz 135:155–161. doi:10.1086/336745 Smith A, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149. doi:10.1111/j.1365-3040.2007.01708.x Taguchi G, Yazawa T, Hayashida N, Okazaki M (2001) Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin. Eur J Biochem 268:4086–4094. doi:10.1046/j.1432-1327.2001.02325.x Todd GW, Getahun A, Cress DC (1971) Resistance in barley to the greenbug, Schizaphis graminum. 1. Toxicity of phenolic and flavonoid compounds and related substances. Ann Entomol Soc Am 64:718–722. doi:10.1093/aesa/64.3.718 Usha Rani P, Pratyusha S (2013) Defensive role of Gossypium hirsutum L. anti-oxidative enzymes and phenolic acids in response to Spodoptera litura F. feeding. J Asia-Pac Entomol 16:131–136. doi:10.1016/j.aspen.2013.01.001 van de Ven W, LeVesque CS, Perring TM, Walling LL (2000) Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1423. doi:10.2307/3871139 Wang CX, Xue M, Bi MJ, Li QL, Hu HY (2010) Temporal effect of tobacco defense responses to Myzus persicae (Sulzer) (Homoptera: Aphididae) induced by Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B biotype. Acta Entomol Sin 53:314–322 War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Jasmonic acid-mediated-induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (hubner) (Lepidoptera: Noctuidae). J Plant Growth Regul 30:512–523. doi:10.1007/s00344-011-9213-0 War AR, Paulraj MG, Ignacimuthu S, Sharma HC (2013) Defensive responses in groundnut against chewing and sap-sucking insects. J Plant Growth Regul 32:259–272. doi:10.1007/s00344-012-9294-4 Wojakowska A, Piasecka A, García-López PM, Zamora-Natera F, Krajewski P et al (2013) Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC-MS techniques. Phytochemistry 92:71–86. doi:10.1016/j.phytochem.2013.04.006 Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24. doi:10.1146/annurev-genet-102209-163500 Xue M, Wang CX, Bi MJ, Li Q, Liu TX (2010) Induced defense by Bemisia tabaci biotype b (Hemiptera: Aleyrodidae) in tobacco against Myzus persicae (Hemiptera: Aphididae). Environ Entomol 39:883–891. doi:10.1603/EN09307 Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant physiol 143:866–875. doi:10.1104/pp.106.090035 Zhang T, Luan JB, Qi JF, Huang CJ, Li M et al (2012) Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 21:1294–1304. doi:10.1111/j.1365-294X.2012.05457.x Zhang PJ, Li WD, Huang F, Zhang JM, Xu FC et al (2013a) Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling. J Chem Ecol 39:612–619. doi:10.1007/s10886-013-0283-2 Zhang PJ, Xu CX, Zhang JM, Lu YB, Wei JN et al (2013b) Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Funct Ecol 27:1304–1312. doi:10.1111/1365-2435.12132 Zhang X, Xue M, Zhao H (2015) Species-specific effects on salicylic acid content and subsequent Myzus persicae (Sulzer) performance by three phloem-sucking insects infesting Nicotiana tabacum L. Arthropod-Plant Interact 9:383–391. doi:10.1007/s11829-015-9385-9 Zhao H, Zhang X, Xue M, Zhang X (2015) Feeding of whitefly on tobacco decreases aphid performance via increased salicylate signaling. PLoS ONE 10:e0138584. doi:10.1371/journal.pone.0138584