Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics
Tài liệu tham khảo
Jaffe, 1971
Benedek, 2013, Why are there so few perovskite ferroelectrics?, J Phys Chem C, 117, 13339, 10.1021/jp402046t
Jaffe, 1965, Piezoelectric Transducer Materials, Proc IEEE, 53, 1372, 10.1109/PROC.1965.4253
Uchino, 1980, Electrostrictive effect in lead magnesium niobate single crystals, J Appl Phys, 51, 1142, 10.1063/1.327724
Dutta, 2011, Dynamic In Situ X-Ray Diffraction Study of Antiferroelectric-Ferroelectric Phase Transition in Strontium-Modified Lead Zirconate Titanate Ceramics, Integr Ferroelectr, 131, 153, 10.1080/10584587.2011.616441
Liu, 2020, Ultra-high energy density induced by diversified enhancement effects in (Pb0.98−xLa0.02Cax)(Zr0.7Sn0.3)0.995O3 antiferroelectric multilayer ceramic capacitors, Chem Eng J
Smolensky, 1960, Fiz Tverd Tela, 2, 2982
Tu, 1994, Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bi1/2TiO3, Phys Rev B: Condens Matter, 49, 11550, 10.1103/PhysRevB.49.11550
Pronin, 1980, Peculiarities of phase transitions in sodium-bismuth titanate, Ferroelectrics, 25, 395, 10.1080/00150198008207029
Zvirgzds, 1982, X-ray study of phase-transitions in ferroelectric Na0.5Bi0.5TiO3, Ferroelectrics, 40, 75, 10.1080/00150198208210600
Isuyov, 1984, Temperature dependence of bireringence and opalescence of the sodium-bismuth titanate crystals, Ferroelectr Lett, 2, 205, 10.1080/07315178408202440
Vakhrushev, 1985, Phase transitions and soft modes in sodium bismuth titanate, Ferroelectrics, 63, 153, 10.1080/00150198508221396
Suchanicz, 1988, Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0.5Bi0.5TiO3, Ferroelectrics, 77, 107, 10.1080/00150198808223232
Suchanicz, 1995, X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3, Ferroelectrics, 165, 249, 10.1080/00150199508228304
Suchanicz, 1995, Investigations of the phase transitions in Na0.5Bi0.5TiO3, Ferroelectrics, 172, 455, 10.1080/00150199508018512
Jones, 2000, The tetragonal phase of Na0.5Bi0.5TiO3 ± a new variant of the perovskite structure, Acta Crystallogr A, 56, 426, 10.1107/S0108768100001166
Jones, 2002, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Crystallogr A, 58, 168, 10.1107/S0108768101020845
Dorcet, 2008, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition, Chem Mater, 20, 5061, 10.1021/cm8004634
Dorcet, 2008, A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3, Acta Mater, 56, 1753, 10.1016/j.actamat.2007.12.027
Dorcet, 2009, The structural origin of the antiferroelectric properties and relaxor behavior of Na0.5Bi0.5TiO3, J Magn Magn Mater, 321, 1758, 10.1016/j.jmmm.2009.02.013
Gorfman, 2010, Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3, J Appl Crystallogr, 43, 1409, 10.1107/S002188981003342X
Aksel, 2011, Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3, Appl Phys Lett, 98, 10.1063/1.3573826
Beanland, 2011, Imaging planar tetragonal sheets in rhombohedral Na0.5Bi0.5TiO3 using transmission electron microscopy, Scr Mater, 65, 440, 10.1016/j.scriptamat.2011.05.031
Levin, 2012, Nano- and mesoscale structure of Na1/2Bi1/2TiO3: A TEM perspective, Adv Funct Mater, 22, 3445, 10.1002/adfm.201200282
Rao, 2013, Ferroelectric-ferroelectric phase coexistence in Na1/2Bi1/2TiO3, Phys Rev B, 87, 10.1103/PhysRevB.87.060102
Rao, 2013, Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3, Phys Rev B, 88, 10.1103/PhysRevB.88.224103
Choe, 2018, Monoclinic distortion, polarization rotation and piezoelectricity in the ferroelectric Na0.5Bi0.5TiO3, IUCrJ, 5, 417, 10.1107/S2052252518006784
Meyer, 2018, Phase transformations in the relaxor Na1/2Bi1/2TiO3 studied by means of density functional theory calculations, J Am Ceram Soc, 101, 472, 10.1111/jace.15207
Aksel, 2013, Local atomic structure deviation from average structure of Na0.5Bi0.5TiO3: Combined x-ray and neutron total scattering study, Phys Rev B, 87, 10.1103/PhysRevB.87.104113
Trolliard, 2008, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: Second order orthorhombic to tetragonal phase transition, Chem Mater, 20, 5074, 10.1021/cm800464d
Kreisel, 2003, High-pressure x-ray scattering of oxides with a nanoscale local structure: Application to Na1/2Bi1/2TiO3, Phys Rev B, 68, 366, 10.1103/PhysRevB.68.014113
Shuvaeva, 2005, Local structure of the lead-free relaxor ferroelectric (KxNa1-x)0.5Bi0.5TiO3, Phys Revb, 71, 10.1103/PhysRevB.71.174114
Keeble, 2012, Bifurcated Polarization Rotation in Bismuth-Based Piezoelectrics, Adv Funct Mater, 23, 185, 10.1002/adfm.201201564
Kreisel, 2004, Effect of high pressure on the relaxor ferroelectrics Na1/2Bi1/2TiO3 (NBT) and PbMg1/3Nb2/3O3 (PMN), Ferroelectrics, 302, 293, 10.1080/00150190490455269
Takenaka, 1991, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn J Appl Phys, 30, 2236, 10.1143/JJAP.30.2236
Sung, 2010, Kim MH and Park TG. notRoles of lattice distortion in (1–x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics, Appl Phys Lett, 96, 10.1063/1.3428580
Maurya, 2013, Origin of high piezoelectric response in A-site disordered morphotropic phase boundary composition of lead-free piezoelectric 0.93(Na0.5Bi0.5)TiO3–0.07BaTiO3, J Appl Phys, 113, 10.1063/1.4792729
Yoshii, 2006, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, Jpn J Appl Phys, 45, 4493, 10.1143/JJAP.45.4493
Lin, 2006, Piezoelectric and ferroelectric properties of [Bi0.5(Na1−x−yKxLiy)0.5]TiO3 lead-free piezoelectric ceramics, Appl Phys Lett, 88
Hiruma, 2009, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics, J Appl Phys, 105, 10.1063/1.3115409
Fu, 2010, Piezoelectric, ferroelectric and dielectric properties of Sm2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Mater Chem Phys, 124, 1065, 10.1016/j.matchemphys.2010.08.033
Zhang, 2008, Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, J Appl Phys, 103
Bhupaijit, 2015, Structural, microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics synthesized by the combustion technique, Ceram Int, 41, S81, 10.1016/j.ceramint.2015.03.226
Lin, 2008, Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics, Appl Phys A, 93, 549, 10.1007/s00339-008-4667-z
Dai, 2010, Piezoelectric and Ferroelectric Properties of Li-Doped (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 Lead-Free Piezoelectric Ceramics, J Am Ceram Soc, 93, 1108, 10.1111/j.1551-2916.2009.03535.x
Cheng, 2015, Microstructure and electrical properties of Bi1/2Na1/2TiO3–BaTiO3–Y2NiMnO6 lead-free piezoelectric ceramics, Ceram Int, 41, 6424, 10.1016/j.ceramint.2015.01.080
Cheng, 2015, Large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics, Ceram Int, 41, 8119, 10.1016/j.ceramint.2015.03.015
Cheng, 2015, Microstructure, electrical properties of Bi2NiMnO6-doped 0.935(Bi1/2Na1/2)TiO3–0.065BaTiO3 lead-free piezoelectric ceramics, J Alloy Compd, 632, 580, 10.1016/j.jallcom.2015.01.090
Tam, 2008, Fabrication of textured BNKLT ceramics by reactive templated grain growth using NBT templates, J Phys D Appl Phys, 41, 10.1088/0022-3727/41/4/045402
Zhao, 2009, Fabrication of Na0.5Bi0.5TiO3-BaTiO3-Textured Ceramics Templated by Plate-Like Na0.5Bi0.5TiO3 Particles, J Am Ceram Soc, 92, 1607, 10.1111/j.1551-2916.2009.03043.x
Maurya, 2012, Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics, Appl Phys Lett, 100, 10.1063/1.4709404
Su, 2012, Fabrication and electrical properties of 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 textured ceramics by RTGG method using micrometer sized BaTiO3 plate-like templates, J Alloy Compd, 525, 133, 10.1016/j.jallcom.2012.02.090
Deng, 2014, Crystallographic textured evolution in BNT-BT-BKT ceramics prepared by reactive-templated grain growth method, J Mater Sci: Mater Electron, 25, 1873
Bai, 2018, Pairing high piezoelectric properties and enhanced thermal stability in grain-oriented BNT-based lead-free piezoceramics, Ceram Int, 44, 11402, 10.1016/j.ceramint.2018.03.193
Liu, 2009, Large Piezoelectric Effect in Pb-Free Ceramics, Phys Rev Lett, 103, 10.1103/PhysRevLett.103.257602
Yao, 2012, Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: The role of phase coexisting, EPL, 98, 27008, 10.1209/0295-5075/98/27008
Zhao, 2018, Practical High Piezoelectricity in Barium Titanate Ceramics Utilizing Multiphase Convergence with Broad Structural Flexibility, J Am Chem Soc, 140, 15252, 10.1021/jacs.8b07844
Saito, 2004, Lead-Free Piezoelectrics, Nature, 432, 84, 10.1038/nature03028
Zheng, 2017, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics, Energy Environ Sci, 10, 528, 10.1039/C6EE03597C
Tao, 2019, Ultrahigh Performance in Lead-Free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence, J Am Chem Soc, 141, 13987, 10.1021/jacs.9b07188
Li, 2018, Ultrahigh Piezoelectric Properties in Textured (K, Na)NbO3-Based Lead-Free Ceramics, Adv Mater, 30, 1705171, 10.1002/adma.201705171
Xu, 2016, Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics, Adv Mater, 28, 8519, 10.1002/adma.201601859
Maurya, 2015, Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials, Sci Rep, 5, 8595, 10.1038/srep08595
Khatua, 2019, A coupled microstructural-structural mechanism governing thermal depolarization delay in Na0.5Bi0.5TiO3-based piezoelectrics, Acta Mater, 179, 49, 10.1016/j.actamat.2019.08.022
Zhang, 2015, Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nature, Communications, 6, 6615
Zhang, 2016, Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite, Dalton Trans, 45, 10891, 10.1039/C6DT01880G
Yin, 2018, Thermal depolarization regulation by oxides selection in lead-free BNT/oxides piezoelectric composites, Acta Mater, 158, 269, 10.1016/j.actamat.2018.07.072
Zhang, 2019, Highly enhanced thermal stability in quenched Na0.5Bi0.5TiO3-based lead-free piezoceramics, J Eur Ceram Soc, 39, 4705, 10.1016/j.jeurceramsoc.2019.06.052
Yin, 2020, Advances in tuning the “d33∝1/Td” bottleneck: simultaneously realizing large d33 and high Td in Bi0.5Na0.5TiO3-based relaxor ferroelectrics, J Mater Chem A, 8, 9209, 10.1039/D0TA01559H
Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system, Appl Phys Lett, 91
Hiruma, 2008, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics, Appl Phys Lett, 92, 10.1063/1.2955533
Teranishi, 2008, Giant strain in lead-free (Bi0.5Na0.5)TiO3-based single crystals, Appl Phys Lett, 92, 10.1063/1.2920767
Daniels, 2009, Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7%BaTiO3 piezoelectric ceramic, Appl Phys Lett, 95, 10.1063/1.3182679
Aksel, 2012, Structure and Properties of Fe-Modified Na0.5Bi0.5TiO3 at Ambient and Elevated Temperature, Phys Rev B, 85, 10.1103/PhysRevB.85.024121
Ma, 2010, Domain structure-dielectric property relationship in lead-free (1–x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics, J Appl Phys, 108, 10.1063/1.3514093
Schütz, 2012, Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate, Adv Funct Mater, 22, 2285, 10.1002/adfm.201102758
Jo, 2009, Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics, J Appl Phys, 105, 10.1063/1.3121203
Hinterstein, 2010, Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics, J Appl Crystallogr, 43, 1314, 10.1107/S0021889810038264
Kling, 2010, In situ transmission electron microscopy of electric field-triggered reversible domain formation in Bi-based lead-free piezoceramics, J Am Ceram Soc, 93, 2452, 10.1111/j.1551-2916.2010.03778.x
Dittmer, 2012, Nanoscale Insight Into Lead-Free BNT-BT-xKNN, Adv Funct Mater, 22, 4208, 10.1002/adfm.201200592
Shi, 2018, Electric field–temperature phase diagrams for (Bi1/2Na1/2)TiO3–BaTiO3–(K1/2Na1/2)NbO3 relaxor ceramics, J Mater Chem C, 6, 12224, 10.1039/C8TC04189J
Malik, 2014, High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics, Appl Phys Express, 7, 10.7567/APEX.7.061502
Dong, 2015, Composition-and Temperature-Dependent Large Strain in (1–x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)–xNaNbO3 Ceramics, J Am Ceram Soc, 98, 1150, 10.1111/jace.13407
Liu, 2016, Giant Strains in Non-Textured (Bi1/2Na1/2)TiO3-Based Lead-Free Ceramics, Adv Mater, 28, 574, 10.1002/adma.201503768
Liu, 2016, Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics, J Appl Phys, 120, 10.1063/1.4958853
Cheng, 2016, Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics, J Eur Ceram Soc, 36, 489, 10.1016/j.jeurceramsoc.2015.09.043
Li, 2017, Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics, Acta Mater, 128, 337, 10.1016/j.actamat.2017.02.037
Lei, 2017, Giant electromechanical strain response in lead-free SrTiO3-doped (Bi0.5Na0.5TiO3–BaTiO3)–LiNbO3 piezoelectric ceramics, J Am Ceram Soc, 100, 4670, 10.1111/jace.15009
Yin, 2018, Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics, Acta Mater, 147, 70, 10.1016/j.actamat.2018.01.054
Manotham, 2019, Excellent electric field-induced strain with high electrostrictive and energy storage performance properties observed in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-Ba(Nb0.01Ti0.99)O3-BiFeO3 ceramics, J Alloy Compd, 808, 10.1016/j.jallcom.2019.151655
Yin, 2019, Superior and anti-fatigue electro-strain in Bi0.5Na0.5TiO3-based polycrystalline relaxor ferroelectrics, J Mater Chem A, 7, 5391, 10.1039/C8TA11650D
Zhu, 2016, Large piezoelectric effect of (Ba, Ca)TiO3-xBa(Sn, Ti)O3 lead-free ceramics, J Eur Ceram Soc, 36, 1017, 10.1016/j.jeurceramsoc.2015.11.039
Zhu, 2013, Enhanced Piezoelectric Properties of (Ba1-xCax)(Ti0.92Sn0.08)O3 Lead-Free Ceramics, J Am Ceram Soc, 96, 241, 10.1111/jace.12038
Zhu, 2013, Phase transition and high piezoelectricity in (Ba, Ca)(Ti1-xSnx)O3 lead-free ceramics, Appl Phys Lett, 103, 10.1063/1.4818732
Zhao, 2016, Site engineering and polarization characteristics in (Ba1-yCay)(Ti1-xHfx)O3 lead-free ceramics, J Appl Phys, 119, 10.1063/1.4939762
Lv, 2015, High unipolar strain in samarium-doped potassium–sodium niobate lead-free ceramics, RSC Adv, 5, 39295, 10.1039/C5RA02260F
Zheng, 2015, Potassium-sodium niobate lead-free ceramics: modified strain as well as piezoelectricity, J Mater Chem A, 3, 1868, 10.1039/C4TA05423G
Zheng, 2015, Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics, ACS Appl Mater Interfaces, 7, 20332, 10.1021/acsami.5b06033
Tao, 2016, Giant piezoelectric effect and high strain response in (1–x)(K0.45Na0.55)(Nb1−ySby)O3-xBi0.5Na0.5Zr1−zHfzO3 lead-free ceramics, J Eur Ceram Soc, 36, 1605, 10.1016/j.jeurceramsoc.2016.01.043
Ye, 2012, Large Strain Response in <001> Textured 0.79BNT-0.20BKT-0.01NKN Lead-Free Piezoelectric Ceramics, J Am Ceram Soc, 95, 3577, 10.1111/j.1551-2916.2012.05353.x
Bai, 2017, NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in <00l> grain oriented lead-free BNT-based piezoelectric materials, J Eur Ceram Soc, 37, 2591, 10.1016/j.jeurceramsoc.2017.02.048
Si, 2020, Giant electro-strain in textured Li+-doped 0.852BNT-0.11BKT-0.038BT ternary lead-free piezoelectric ceramics, J Am Ceram Soc, 103, 1765, 10.1111/jace.16853
Acosta, 2015, Core-Shell Lead-Free Piezoelectric Ceramics: Current Status and Advanced Characterization of the Bi1/2Na1/2TiO3-SrTiO3 System, J Am Ceram Soc, 98, 3405, 10.1111/jace.13853
Koruza, 2016, Formation of the core–shell microstructure in lead-free Bi1/2Na1/2TiO3-SrTiO3 piezoceramics and its influence on the electromechanical properties, J Eur Ceram Soc, 36, 1009, 10.1016/j.jeurceramsoc.2015.11.046
Groh, 2014, Relaxor/ferroelectric composites: A solution in the quest for practically viable lead-free incipient piezoceramics, Adv Funct Mater, 24, 356, 10.1002/adfm.201302102
Wang, 2019, Phase-Field Study of Electromechanical Coupling in Lead-Free Relaxor/Ferroelectric-Layered Composites, Adv Electron Mater, 5, 1800710, 10.1002/aelm.201800710
Hao, 2016, Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M = Nb, Ta, Sb) lead-free piezoceramics, J Eur Ceram Soc, 36, 4003, 10.1016/j.jeurceramsoc.2016.06.020
Jin, 2019, Thermally stable electrostrains and composition-dependent electrostrictive coefficient Q33 in lead-free ferroelectric ceramics, Ceram Int, 45, 22854, 10.1016/j.ceramint.2019.07.328
Qi, 2020, Giant electrostrictive strain in (Bi0.5Na0.5)TiO3-NaNbO3 lead-free relaxor antiferroelectrics featuring temperature and frequency stability, J Mater Chem A, 8, 2369, 10.1039/C9TA12244C
Shieh, 2007, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics, Acta Mater, 55, 3081, 10.1016/j.actamat.2007.01.012
Zhao, 2016, Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M = Sn, Hf, Zr) lead-free ceramics, Dalton Trans, 45, 6466, 10.1039/C5DT04891E
Qi, 2019, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency, J Mater Chem A, 7, 3971, 10.1039/C8TA12232F
Yang, 2020, Novel BaTiO3-Based, Ag/Pd-Compatible Lead-Free Relaxors with Superior Energy Storage Performance, ACS Appl Mater Interfaces, 12, 43942, 10.1021/acsami.0c13057
Yang, 2016, Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics, J Mater Chem A, 4, 13778, 10.1039/C6TA04107H
Hao, 2013, A review on the dielectric materials for high energy-storage application, J Adv Dielectr, 03, 1330001, 10.1142/S2010135X13300016
Zhou, 2018, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability, J Mater Chem C, 6, 8528, 10.1039/C8TC03003K
Hu, 2015, Xing Z and Wei X. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics, J Alloy Compd, 640, 416, 10.1016/j.jallcom.2015.02.225
Yuan, 2017, Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties, J Mater Chem C, 5, 9552, 10.1039/C7TC02478A
Shao, 2017, Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials, J Mater Chem A, 5, 554, 10.1039/C6TA07803F
Gao, 2019, Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties, J Mater Chem A, 7, 2225, 10.1039/C8TA09353A
Zhao, 2017, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance, Adv Mater, 29, 1701824, 10.1002/adma.201701824
Yan, 2019, Silver niobate based lead-free ceramics with high energy storage density, J Mater Chem A, 7, 10702, 10.1039/C9TA00995G
Qi, 2019, Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains, Adv Funct Mater, 29, 1903877, 10.1002/adfm.201903877
Tian, 2020, Large energy-storage density in transition-metal oxide modified NaNbO3–Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure, J Mater Chem A, 8, 8352, 10.1039/D0TA02285C
Chen, 2020, Realizing stable relaxor antiferroelectric and superior energy-storage properties in (Na1-x/2Lax/2)(Nb1-xTix)O3 lead-free ceramics through A/B-site complex substitution, ACS Appl Mater Interfaces, 12, 32871, 10.1021/acsami.0c09876
Li, 2018, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency, Adv Mater, 30, 1802155, 10.1002/adma.201802155
Li, 2019, Constructing layered structures to enhance the breakdown strength and energy density of Na0.5Bi0.5TiO3-based lead-free dielectric ceramics, J Mater Chem C, 7, 15292, 10.1039/C9TC05637H
Hu, 2020, Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics, J Mater Chem C, 8, 591, 10.1039/C9TC05528B
Li, 2020, A novel lead-free Na0.5Bi0.5TiO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications, J Materiomics, 6, 743, 10.1016/j.jmat.2020.06.005
Yan F, Huang K, Jiang T, Zhou X, Shi Y, GE G, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater 2020;30:392–400.
Li, 2020, Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications, Nat Mater, 19, 999, 10.1038/s41563-020-0704-x
Gao, 2011, Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics, J Am Ceram Soc, 94, 4382, 10.1111/j.1551-2916.2011.04731.x
Yang, 2019, Perovskite lead-free dielectrics for energy storage applications, Prog Mater Sci, 102, 72, 10.1016/j.pmatsci.2018.12.005
Ye, 2014, Enhanced energy-storage properties of SrTiO3 doped (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free antiferroelectric ceramics, J Mater Sci: Mater Electron, 25, 4632
Mishra, 2017, A complex lead-free (Na, Bi, Ba)(Ti, Fe)O3 single phase perovskite ceramic with a high energy-density and high discharge-efficiency for solid state capacitor applications, J Eur Ceram Soc, 37, 2379, 10.1016/j.jeurceramsoc.2017.01.036
Yin, 2018, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics, J Mater Chem A, 6, 9823, 10.1039/C8TA00474A
Pu, 2018, High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 ceramics, ACS Sustainable Chem Eng, 6, 6102, 10.1021/acssuschemeng.7b04754
Pu, 2017, Enhanced energy storage density of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3 with MgO addition, J Alloy Compd, 702, 171, 10.1016/j.jallcom.2017.01.249
Tao, 2018, Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3:ZnO relaxor ferroelectric composites with high breakdown electric field and large energy storage properties, J Eur Ceram Soc, 38, 4946, 10.1016/j.jeurceramsoc.2018.07.006
Ma, 2019, Fine-grained BNT-based lead-free composite ceramics with high energy-storage density, Ceram Int, 45, 19895, 10.1016/j.ceramint.2019.06.245
Yan, 2018, Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure, J Mater Chem C, 6, 7905, 10.1039/C8TC02368A
Yang, 2019, A novel lead-free ceramic with layered structure for high energy storage applications, J Alloy Compd, 773, 244, 10.1016/j.jallcom.2018.09.252
Jia, 2018, Superior temperature-stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3, J Am Ceram Soc, 101, 3468, 10.1111/jace.15519
Cao, 2016, Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems, Appl Phys Lett, 108, 10.1063/1.4950974
Qiao, 2019, Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficieny under a moderate electric field, J Mater Chem C, 7, 10514, 10.1039/C9TC03597D
Li, 2019, Enhanced energy-storage performance of (1–x)(0.72Bi0.5Na0.5TiO3-0.28Bi0.2Sr0.7□0.1TiO3)-xLa ceramics, J Alloy Compd, 775, 116, 10.1016/j.jallcom.2018.10.092
Zhou, 2019, Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3-NaTaO3 relaxor ferroelectrics, ACS Appl Mater Interfaces, 11, 43107, 10.1021/acsami.9b13215
Zhou, 2019, Large energy density with excellent stability in fine-grained (Bi0.5Na0.5)TiO3-based lead-free ceramics, J Eur Ceram Soc, 39, 4053, 10.1016/j.jeurceramsoc.2019.05.056
Jiang, 2014, Electrocaloric effect based on the depolarization transition in (1–x)Bi0.5Na0.5TiO3–xKNbO3 lead-free ceramics, Ceram Int, 40, 2627, 10.1016/j.ceramint.2013.10.066
Cao, 2016, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics, J Eur Ceram Soc, 36, 593, 10.1016/j.jeurceramsoc.2015.10.019
Li, 2014, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3, Nat Mater, 13, 31, 10.1038/nmat3782
Li, 2015, Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3, Chem Mater, 27, 629, 10.1021/cm504475k
Sun, 2017, Room-Temperature Large and Reversible Modulation of Photoluminescence by in Situ Electric Field in Ergodic Relaxor Ferroelectrics, ACS Appl Mater Interfaces, 9, 34042, 10.1021/acsami.7b09354
Kandula, 2018, Multifunctional Nd3+ substituted Na0.5Bi0.5TiO3 as lead-free ceramics with enhanced luminescence, ferroelectric and energy harvesting properties. RSC, Advances, 8, 15282
Shvartsman, 2012, Lead-Free Relaxor Ferroelectrics, J Am Ceram Soc, 95, 1, 10.1111/j.1551-2916.2011.04952.x
Jo, 2012, Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective, J Electroceram, 29, 71, 10.1007/s10832-012-9742-3
Glaum, 2014, Electric Fatigue of Lead-Free Piezoelectric Materials, J Am Ceram Soc, 97, 665, 10.1111/jace.12811
Wu, 2015, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chem Rev, 115, 2559, 10.1021/cr5006809
Rödel, 2015, Transferring lead-free piezoelectric ceramics into application, J Eur Ceram Soc, 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013
Acosta, 2017, BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives, Appl Phys Rev, 4, 10.1063/1.4990046
Moriana, 2018, Lead-free textured piezoceramics using tape casting: A review, J Materiomics, 4, 277, 10.1016/j.jmat.2018.09.006
Liu, 2018, Antiferroelectrics for Energy Storage Applications: a Review, Adv Mater Technol, 1800111
Zheng, 2018, Recent development in lead-free perovskite piezoelectric bulk materials, Prog Mater Sci, 98, 552, 10.1016/j.pmatsci.2018.06.002
Hao, 2019, Progress in high-strain perovskite piezoelectric ceramics, Mater Sci Eng R, 135, 1, 10.1016/j.mser.2018.08.001
Wu, 2019, Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Lead-Free Materials, Adv Funct Mater, 29, 1902911, 10.1002/adfm.201902911
Feng, 2020, Defects and aliovalent doping engineering in electroceramics, Chem Rev, 120, 1710, 10.1021/acs.chemrev.9b00507
Lv, 2020, Zhang X-x and Wu J. Emerging new phase boundary in potassium sodium-niobate based ceramics, Chem Soc Rev, 49, 671, 10.1039/C9CS00432G
Lv, 2020, Nano-domains in lead-free piezoceramics: a review, J Mater Chem A, 8, 10026, 10.1039/D0TA03201H
Yang, 2020, Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications, J Mater Chem A, 8, 23724, 10.1039/D0TA08345C
Wu, 2020, Perovskite lead-free piezoelectric ceramics, J Appl Phys, 127, 10.1063/5.0006261
Jaffe, 1954, Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics, J Appl Phys, 25, 809, 10.1063/1.1721741
Jaffe, 1955, Properties of Piezoelectric Ceramics in the Solid Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate, J Res Nat Bur Stand, 55, 239, 10.6028/jres.055.028
Uršič, 2011, Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN-PT) Material for Actuator Applications, Smart Materials Research, 452901
Cowley, 2011, Relaxing with relaxors: a review of relaxor ferroelectrics, Adv Phys, 60, 229, 10.1080/00018732.2011.555385
Goldschmidt, 1926, Die Gesetze der Krystallochemie, Naturwissenschaften, 14, 477, 10.1007/BF01507527
Beanl, 2014, Symmetry and defects in rhombohedral single-crystalline Na0.5Bi0.5TiO3, Phys Rev B, 89, 1
Geday, 2004, Birefringence imaging of phase transitions: application to Na0.5Bi0.5TiO3, J Appl Crystallogr, 33, 909, 10.1107/S0021889800002582
Petzelt, 2004, Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3, J Phys: Condens Matter, 16, 2719
Rao, 2016, Electric field and temperature dependence of the local structural disorder in the lead-free ferroelectric Na0.5Bi0.5TiO3: An EXAFS study, Phys Rev B, 93, 10.1103/PhysRevB.93.024106
Ba, 2006, Recent progress in relaxor ferroelectrics with perovskite structure, J Mater Sci, 41, 31, 10.1007/s10853-005-5915-7
Jo, 2011, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol%BaTiO3, J Appl Phys, 110, 10.1063/1.3645054
Hiruma, 2006, Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics, Jpn J Appl Phys, 45, 7409, 10.1143/JJAP.45.7409
Hiruma, 2008, Phase transition temperature and electrical properties of (Bi1/2Na1/2)TiO3–(Bi1/2A1/2)TiO3 (A=Li and K) lead-free ferroelectric ceramics, J Appl Phys, 103, 10.1063/1.2903498
Ranjan, 2005, Structure and dielectric properties of (Na0.50Bi0.50)1−xBaxTiO3: 0≤x≤0.10, Solid State Commun, 135, 394, 10.1016/j.ssc.2005.03.053
Wylie-van Eerd, 2010, Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy, Phys Rev B, 82, 10.1103/PhysRevB.82.104112
Ma, 2010, Phase diagram of unpoled lead-free (1–x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics, Solid State Commun, 150, 1497, 10.1016/j.ssc.2010.06.006
Ma, 2011, In situ Transmission Electron Microscopy Study on the Phase Transitionsin Lead-Free (1–x)(Bi1/2Na1/2)TiO3-xBaTiO3 Ceramics, J Am Ceram Soc, 94, 4040, 10.1111/j.1551-2916.2011.04670.x
Jo, 2011, Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics, J Appl Phys, 109, 10.1063/1.3530737
Ma, 2012, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoelectrics, Phys Rev Lett, 109, 10.1103/PhysRevLett.109.107602
Ma, 2013, A New Phase Boundary in (Bi1/2Na1/2)TiO3−BaTiO3 Revealed via a Novel Method of Electron Diffraction Analysis, Adv Funct Mater, 23, 5261, 10.1002/adfm.201300640
Ut, 2012, Crystal structure of 0.96(Na0.5Bi0.5TiO3)–0.04(BaTiO3) from combined refinement of x-ray and neutron diffraction patterns, Appl Phys Lett, 101
Maurya, 2014, Effect of poling on nanodomains and nanoscale structure in A-site disordered lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3, J Mater Chem C, 2, 8423, 10.1039/C4TC01124D
Gdl, 2019, Local-scale structural response of (1–x)Na0.5Bi0.5TiO3-xBaTiO3 to external electric fields, Appl Phys Lett, 114
Gomah-Pettry J-R, Saïd S, Marchet P, Mercurio J-P. Sodium-bismuth titanate based lead-free ferroelectric materials. J Eur Ceram Soc 2004;24:1165–9.
Suchanicz, 2003, Structural and dielectric properties of (Na0.5Bi0.5)0.70Ba0.30TiO3 ceramics, J Eur Ceram Soc, 23, 1559, 10.1016/S0955-2219(02)00406-5
Suchanicz, 2003, Structural and electric characteristics of (Na0.5Bi0.5)0.50Ba0.50TiO3 and (Na0.5Bi0.5)0.20Ba0.80TiO3 ceramics, Mater Sci Eng, B, 97, 154, 10.1016/S0921-5107(02)00577-9
Datta, 2010, Anomalous phase transitions of lead-free piezoelectric xNa0.5Bi0.5TiO3-(1–x)BaTiO3 solid solutions with enhanced phase transition temperatures, Phys Rev B, 82, 10.1103/PhysRevB.82.224105
Pronin, 1982, Phase transitions in solid solutions of sodium-bismuth and potassium-bismuth titanates, Sov Phys Solid State, 24, 1060
Sasaki, 1999, Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Systems, Jpn J Appl Phys, 38, 5564, 10.1143/JJAP.38.5564
Hiruma, 2008, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions, J Appl Phys, 104, 10.1063/1.3043588
Levin, 2013, Local structure, pseudosymmetry, and phase transitions in Na1/2Bi1/2TiO3–K1/2Bi1/2TiO3 ceramics, Phys Rev B, 87, 10.1103/PhysRevB.87.024113
Adhikary, 2019, Long-period structural modulation on the global length scale as the characteristic feature of the morphotropic phase boundaries in the Na0.5Bi0.5TiO3 based lead-free piezoelectrics, Acta Mater, 164, 749, 10.1016/j.actamat.2018.11.016
Neagu, 2017, Local disorder in Na0.5Bi0.5TiO3-piezoceramic determined by 3D electron diffuse scattering, Sci Rep, 7, 12519, 10.1038/s41598-017-12801-w
Neagu, 2018, The influence of potassium content on octahedral-tilt disorder in Na0.5Bi0.5TiO3-solid solutions near morphotropic phase boundary, Scrip Mater, 152, 49, 10.1016/j.scriptamat.2018.04.016
Ehara, 2015, Electric-field-temperature phase diagram of Mn-doped Bi0.5(Na0.9K0.1)0.5TiO3 ceramics, Appl Phys Lett, 107, 10.1063/1.4938759
Ehara, 2016, Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 ceramics, J Appl Phys, 120, 10.1063/1.4966614
Otonicar, 2017, External-field-induced crystal structure and domain texture in (1–x)Na0.5Bi0.5TiO3–xK0.5Bi0.5TiO3 piezoceramics, Acta Mater, 127, 319, 10.1016/j.actamat.2017.01.052
Babu, 2018, Coexistence of ferroelectric phases and electric field induced structural transformation in sodium potassium bismuth titanate ceramics, J Appl Phys, 123
Damjanovic, 2005, Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics, J Am Ceram Soc, 88, 2663, 10.1111/j.1551-2916.2005.00671.x
Viola, 2013, Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics, J Adv Dielectr, 3, 1350007, 10.1142/S2010135X13500070
Fu, 2000, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature, 403, 281, 10.1038/35002022
Zhang, 2012, High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective, J Appl Phys, 111
Wada S. In Ye Z-G, editor. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials-Synthesis, Characterization and Applications. England: Woodhead Publishing; 2008, p. 266–303.
Wada, 1999, Engineered domain configuration in rhombohedral PZN-PT single crystals and their ferroelectric related properties, Ferroelectrics, 221, 147, 10.1080/00150199908016449
Yako, 2005, Domain size dependence of d33 piezoelectric properties for barium titanate single crystals with engineered domain configurations, Mater Sci Eng, B, 120, 181, 10.1016/j.mseb.2005.02.031
Wada, 2006, Domain wall engineering in lead-free piezoelectric materials for enhanced piezoelectric properties, Ferroelectrics, 196, 109
Li, 2011, Critical property in relaxor-PbTiO3 single crystals – Shear piezoelectric response, Adv Funct Mater, 21, 2118, 10.1002/adfm.201002711
Li, 2016, The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals, Nat Commun, 7, 13807, 10.1038/ncomms13807
Viola, 2013, Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics, J Adv Dielectr, 03, 1350007, 10.1142/S2010135X13500070
Damjanovic, 2006, Piezoelectric anisotropy: enhanced piezoelectric response along nonpolar directions in perovskite crystals, J Mater Sci, 41, 65, 10.1007/s10853-005-5925-5
Davis M. Swiss Federal Institute of Technology; 2006.
Islam, 2000, Ionic transport in ABO3 perovskite oxides: a computer modelling tour, J Mater Chem, 10, 1027, 10.1039/a908425h
Chu, 2002, Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics, J Eur Ceram Soc, 22, 2115, 10.1016/S0955-2219(02)00027-4
Kim, 2007, Electrical properties of (1–x)(Bi0.5Na0.5)TiO3–xBaTiO3 synthesized by emulsion method, Ceram Int, 33, 447, 10.1016/j.ceramint.2005.10.022
Xu, 2008, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics, Solid State Sci, 10, 934, 10.1016/j.solidstatesciences.2007.11.003
Parija, 2012, Ferroelectric and piezoelectric properties of (1–x)(Bi0.5Na0.5)TiO3–xBaTiO3 ceramics, J Mater Sci: Mater Electron, 24, 402
Xu, 2014, Improved ferroelectricity of (1–x)Na0.5Bi0.5TiO3–xBaTiO3 ceramics rapidly sintered at low temperature, Ceram Int, 40, 11819, 10.1016/j.ceramint.2014.04.014
Anthoniappen, 2014, Enhanced piezoelectric and dielectric responses in 92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3 ceramics, J Am Ceram Soc, 97, 1890, 10.1111/jace.12864
Lidjici, 2015, Raman and electrical studies on the (1–x)(Na0.5Bi0.5)TiO3−xBaTiO3 lead free ceramics, J Alloy Compd, 618, 643, 10.1016/j.jallcom.2014.08.161
Zhou, 2016, Enhanced piezoresponse and electric field induced relaxor-ferroelectric phase transition in NBT-0.06BT ceramic prepared from hydrothermally synthesized nanoparticles, Ceram Int, 42, 18631, 10.1016/j.ceramint.2016.08.208
Zeng, 2014, Origin of high piezoelectric activity in perovskite ferroelectric ceramics, Appl Phys Lett, 104, 10.1063/1.4884640
Yang, 2011, Dielectric, ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3–(Ba0.7Ca0.3)TiO3 ceramics at morphotropic phase boundary composition, Mater Sci Eng, B, 176, 260, 10.1016/j.mseb.2010.12.007
Jan, 2014, Electrical Properties of Ca-modified Na0.5Bi0.5TiO3–BaTiO3 ceramics, Ceram Int, 40, 15439, 10.1016/j.ceramint.2014.06.107
Lee, 2009, Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics, J Eur Ceram Soc, 29, 1443, 10.1016/j.jeurceramsoc.2008.08.028
Xu, 2016, High piezoelectric response in (Li0.5Sm0.5)2+-modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 near the nonergodic–ergodic relaxor transition, J Electron Mater, 45, 2967, 10.1007/s11664-016-4347-2
Peng, 2005, Preparation and properties of (Bi1/2Na1/2)TiO3–Ba(Ti, Zr)O3 lead-free piezoelectric ceramics, Mater Lett, 59, 1576, 10.1016/j.matlet.2005.01.026
Glaum, 2013, Tailoring the Piezoelectric and Relaxor Properties of (Bi1/2Na1/2)TiO3-BaTiO3 via Zirconium Doping, J Am Ceram Soc, 96, 2881, 10.1111/jace.12405
Tian, 2007, Diffusion phase transition and dielectric characteristics of Bi0.5Na0.5TiO3–Ba(Hf, Ti)O3 lead-free ceramics, Solid State Commun, 142, 10, 10.1016/j.ssc.2007.01.043
Han, 2018, Shrinkage mechanism and enhanced piezoelectric properties of Ta doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 lead free ceramics, Ceram Int, 44, 5352, 10.1016/j.ceramint.2017.12.155
Yoon, 2008, Effects of co-doped CaO/MnO on the piezoelectric/dielectric properties and phase transition of lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoelectric ceramics, J Electroceram, 23, 564, 10.1007/s10832-008-9548-5
Wu, 2012, Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3-modified Bi0.51Na0.50TiO3 lead-free ceramics, Ceram Int, 38, 5677, 10.1016/j.ceramint.2012.04.011
Li, 2003, Electrical Properties of La3+-Doped (Na0.5Bi0.5)0.94Ba0.06TiO3 Ceramics, Jpn J Appl Phys, 42, 7387, 10.1143/JJAP.42.7387
Zhou, 2009, Dielectric and piezoelectric properties of Y2O3 doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics, Mater Res Bull, 44, 724, 10.1016/j.materresbull.2008.09.046
Fu, 2010, Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Mater Sci Eng, B, 167, 161, 10.1016/j.mseb.2010.01.057
Zhi-hui, 2011, Piezoelectric and dielectric properties of Dy2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, J Alloy Compd, 509, 482, 10.1016/j.jallcom.2010.09.070
Zhou, 2015, Improved piezoelectric and bright up-conversion photoluminescent properties in Ho-doped Bi0.5Na0.5TiO3–BaTiO3 lead-free ceramics, J Mater Sci: Mater Electron, 26, 6979
Hammer M. Ph.D. Thesis, University of Karlsruhe; 1996.
Zhou, 2005, Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics, Mater Lett, 59, 1649, 10.1016/j.matlet.2005.01.034
Hu, 2008, Piezoelectric and Dielectric Properties of Bi2O3-Doped (Bi0.5Na0.5)0.94Ba0.06TiO3 Lead-Free Piezoelectric Ceramics, Key Eng Mater, 368–372, 1915, 10.4028/www.scientific.net/KEM.368-372.1915
Xu, 2009, Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3–BaTiO3 composition near the morphotropic phase boundary, J Alloy Compd, 471, 310, 10.1016/j.jallcom.2008.03.078
Parija, 2015, Morphotropic Phase boundary in BNT-BZT solid solution: A study by Raman spectroscopy and electromechanical parameters, Journal of Ceramic Processing Research, 16, 565
Zhang, 2018, Mn doping effects on electric properties of 0.93(Bi0.5Na0.5)TiO3-0.07Ba(Ti0.945Zr0.055)O3 ceramics, J Am Ceram Soc, 101, 2996, 10.1111/jace.15457
Dinh, 2015, Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82K0.18)1/2TiO3 ceramics, Ceram Int, 41, S458, 10.1016/j.ceramint.2015.03.150
Zhang, 2008, Enhancing Electrical Properties in NBT-KBT Lead-Free Piezoelectric Ceramics by Optimizing Sintering Temperature, J Am Ceram Soc, 91, 2716, 10.1111/j.1551-2916.2008.02469.x
Yang, 2008, Structure and electrical properties of (1–x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary, Mater Res Bull, 43, 81, 10.1016/j.materresbull.2007.02.016
Moosavi, 2014, High-field electromechanical response of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 across its morphotropic phase boundary, J Phys D Appl Phys, 47, 10.1088/0022-3727/47/5/055304
Lee, 2018, Enhanced piezoelectric properties of (Bi, Na)TiO3-(Bi, K)TiO3 ceramics prepared by two-step sintering process, Int J Appl Ceram Technol, 15, 531, 10.1111/ijac.12798
Hernandez-Cuevas, 2019, Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic, J Adv Ceram, 8, 278, 10.1007/s40145-019-0314-8
Liao, 2007, Synthesis and properties of Bi0.5(Na1−x−yKxAgy)0.5TiO3 lead-free piezoelectric ceramics, Ceram Int, 33, 1445, 10.1016/j.ceramint.2006.05.004
Li, 2007, Piezoelectric and dielectric properties of CeO2-doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics, Ceram Int, 33, 95, 10.1016/j.ceramint.2005.08.001
Pan, 2011, Microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics, Curr Appl Phys, 11, 888, 10.1016/j.cap.2010.12.013
Zhi-Hui, 2011, Piezoelectric and Dielectric Properties of Dy2O3-Doped Bi0.5(Na0.82K0.18)0.5TiO3 Lead-Free Ceramics, Ferroelectrics, 425, 63, 10.1080/00150193.2011.634752
Fu, 2012, Structure and electrical properties of the Ho2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics, J Mater Sci: Mater Electron, 23, 2167
Fu, 2012, Structure and electrical properties of Er2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics, Mater Des, 40, 373, 10.1016/j.matdes.2012.04.020
Yu, 2008, Dielectric, ferroelectric, and piezoelectric properties of the lead-free (1−x)(Na0.5Bi0.5)TiO3-xBiAlO3 solid solution, Appl Phys Lett, 93, 112902, 10.1063/1.2967335
Jiao, 2013, Morphotropic phase boundary and electric properties in (1–x)Bi0.5Na0.5TiO3–xBaSnO3 lead-free piezoelectric ceramics, J Mater Sci: Mater Electron, 24, 4080
Rahman, 2014, Dielectric, ferroelectric and field-induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3 ceramics, Curr Appl Phys, 14, 331, 10.1016/j.cap.2013.12.009
Hiruma, 2009, Detection of morphotropic phase boundary of (Bi1/2Na1/2)TiO3-Ba(Al1/2Sb1/2)O3 solid-solution ceramics, Appl Phys Lett, 95, 10.1063/1.3194146
Wang, 2009, Morphotropic phase boundary in (1–x)Bi0.5Na0.5TiO3-x(Bi0.8La0.2)FeO3 with improved depolarization temperature, Phys Status Solidi (RRL) - Rapid Res Lett, 3, 245, 10.1002/pssr.200903189
Bai, 2015, Structure and electromechanical properties in Bi0.5Na0.5TiO3-based lead-free piezoceramics with calculated end-member Bi(Ni0.5Ti0.5)O3, J Eur Ceram Soc, 35, 3457, 10.1016/j.jeurceramsoc.2015.05.001
Hiruma, 2009, Formation of Morphotropic Phase Boundary and Electrical Properties of (Bi1/2Na1/2)TiO3–Ba(Al1/2Nb1/2)O3 Solid Solution Ceramics, Jpn J Appl Phys, 48, 09KC08, 10.1143/JJAP.48.09KC08
Weyland, 2016, Criticality: Concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics, Adv Funct Mater, 26, 7326, 10.1002/adfm.201602368
Zhou, 2007, Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of Bi1/2Na1/2TiO3−Bi(Mg2/3Nb1/3)O3, J Mater Sci, 43, 1016, 10.1007/s10853-007-2246-x
Lin, 2008, Piezoelectric and dielectric properties of Bi0.5Na0.5TiO3–Bi0.5Li0.5TiO3 lead-free ceramics, J Mater Sci: Mater Electron, 20, 393
Chen, 2012, Effect of Li0.12Na0.88NbO3 content on the electrical properties of Bi0.50Na0.50TiO3 lead-free piezoelectric ceramics, J Alloy Compd, 520, 7, 10.1016/j.jallcom.2012.01.014
Bai, 2013, The Composition and Temperature-Dependent Structure Evolution and Large Strain Response in (1–x)(Bi0.5Na0.5)TiO3−xBa(Al0.5Ta0.5)O3 Ceramics, J Am Ceram Soc, 96, 246, 10.1111/jace.12039
Wang, 2013, Preparation and Electric Properties of Bi0.5Na0.5TiO3-Bi(Al0.5Ga0.5)O3 Lead-Free Piezoceramics, J Am Ceram Soc, 96, 3793, 10.1111/jace.12588
Li, 2015, Phase-Composition-Dependent Piezoelectric and Electromechanical Strain Properties in (Bi1/2Na1/2)TiO3-Ba(Ni1/2Nb1/2)O3 Lead-Free Ceramics, J Am Ceram Soc, 98, 811, 10.1111/jace.13363
Ullah, 2015, Relaxor behavior and piezoelectric properties of Bi(Mg0.5Ti0.5)O3-modified Bi0.5Na0.5TiO3 lead-free ceramics, Ceram Int, 41, 10557, 10.1016/j.ceramint.2015.04.150
Lin, 2008, Structure and electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics, Solid State Ionics, 178, 1930
Cheng, 2015, Microstructure and enhanced electrical properties of lead-free Bi1/2Na1/2TiO3–BaTiO3–La2CoMnO6 ternary system ceramics, Ceram Int, 41, 14124, 10.1016/j.ceramint.2015.07.033
Cheng, 2016, Giant piezoelectricity and ultrahigh strain response in bismuth sodium titanate lead-free ceramics, Mater Lett, 165, 143, 10.1016/j.matlet.2015.11.131
Wang, 2007, Ferroelectric properties of lithia-doped (Bi0.95Na0.75K0.20)0.5Ba0.05TiO3 ceramics, Mater Lett, 61, 3847, 10.1016/j.matlet.2006.12.045
Fan, 2007, Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–KNbO3 lead-free piezoelectric ceramics, Appl Phys Lett, 91, 10.1063/1.2815918
Zhou, 2008, Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoelectric ceramics, Mater Sci Eng, B, 153, 31, 10.1016/j.mseb.2008.09.032
Hiruma, 2009, Depolarization temperature and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, Ceram Int, 35, 117, 10.1016/j.ceramint.2007.10.023
Zhou, 2009, Microstructure and electrical properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–LiNbO3 lead-free piezoelectric ceramics, J Phys Chem Solids, 70, 541, 10.1016/j.jpcs.2008.12.013
Wu, 2011, Microstructure, ferroelectric, and piezoelectric properties of (1–x−y)Bi0.5Na0.5TiO3–xBaTiO3–yBi0.5Ag0.5TiO3 lead-free ceramics, J Alloy Compd, 509, 466, 10.1016/j.jallcom.2010.09.062
Wu, 2012, Investigation of a new lead-free (0.89−x)(Bi0.5Na0.5)TiO3–0.11(Bi0.5K0.5)TiO3–xBa0.85Ca0.15Ti0.90Zr0.10O3 ceramics, Mater Res Bull, 47, 3937, 10.1016/j.materresbull.2012.07.039
Liu, 2017, An Investigation of Dielectric, Piezoelectric Properties and Microstructures of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 Lead-Free Piezoelectric Ceramics Doped with K2AlNbO5 Compound, J Electron Mater, 46, 5287, 10.1007/s11664-017-5545-2
Bell, 2001, Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes, J Appl Phys, 89, 3907, 10.1063/1.1352682
Liu, 2009, Complete set of material constants of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal with morphotropic phase boundary composition, J Appl Phys, 106
Yasuda, 2009, Electrical Properties of Lead-Free Relaxor Ferroelectric Solid Solution Single Crystal (Na1/2Bi1/2)TiO3-BaTiO3 Grown by Bridgman Method, Jpn J Appl Phys, 48, 09KC06, 10.1143/JJAP.48.09KC06
Lin D, Li Z, Zhang S, Xu Z, Yao X. Dielectric/piezoelectric properties and temperature dependence of domain structure evolution in lead free single crystal. Solid State Commun 2009;149:1646–9.
Sun, 2013, Complete matrix properties of [001]c and [011]c poled 0.33Pb(In1/2Nb1/2)O3–0.38Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystals, J Alloy Compd, 553, 267, 10.1016/j.jallcom.2012.11.111
Zheng, 2013, Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions, Appl Phys Lett, 103, 10.1063/1.4821853
Huo, 2014, High Quality Lead-Free (Li, Ta) Modified (K, Na)NbO3 Single Crystal and its Complete Set of Elastic, Dielectric and Piezoelectric Coefficients with Macroscopic 4mm Symmetry, CrystEngComm, 16, 9828, 10.1039/C4CE01208A
Huo, 2015, (K, Na, Li)(Nb, Ta)O3: Mn Lead-Free Single Crystal with High Piezoelectric Properties, J Am Ceram Soc, 98, 1829, 10.1111/jace.13540
Yang, 2015, Growth mechanism and enhanced electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric single crystals grown by a solid-state crystal growth method, J Eur Ceram Soc, 36, 541, 10.1016/j.jeurceramsoc.2015.11.002
Lee, 2016, Growth of (Na0.5Bi0.5)TiO3-SrTiO3 single crystals by solid state crystal growth, Ceram Int, 42, 18894, 10.1016/j.ceramint.2016.09.038
Sabolsky, 2001, Piezoelectric properties of <001> textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics, Appl Phys Lett, 78, 2551, 10.1063/1.1367291
Sabolsky, 2003, Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics, J Appl Phys, 93, 4072, 10.1063/1.1554488
Richter, 2008, Textured PMN–PT and PMN–PZT, J Am Ceram Soc, 91, 929, 10.1111/j.1551-2916.2007.02216.x
Yan, 2011, Templated Grain Growth of <001>-Textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 Piezoelectric Ceramics for Magnetic Field Sensors, J Am Ceram Soc, 94, 1784, 10.1111/j.1551-2916.2010.04298.x
Yan, 2014, Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3-PbTiO3 <001>C radially textured cylinders, Appl Phys Lett, 104, 10.1063/1.4861224
Chang, 2015, Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics, Appl Phys Lett, 107, 10.1063/1.4929688
Duran, 2016, High strain, <001>-textured Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 piezoelectric ceramics, Scr Mater, 113, 14, 10.1016/j.scriptamat.2015.10.005
Chang, 2017, Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics, Appl Phys Lett, 111, 232901, 10.1063/1.5006288
Berksoy-Yavuz, 2018, Electrical properties and impedance spectroscopy of crystallographically textured 0.675[Pb(Mg1/3Nb2/3)O3]-0.325[PbTiO3] ceramics, J Mater Sci: Mater Electron, 29, 13310
Chang, 2011, Enhanced Electromechanical Properties and Temperature Stability of Textured (K0.5Na0.5)NbO3-Based Piezoelectric Ceramics, J Am Ceram Soc, 94, 2494, 10.1111/j.1551-2916.2011.04393.x
Sato, 2007, Preparation of <110>-Textured BaTiO3 Ceramics by the Reactive-Templated Grain Growth Method Using Needlelike TiO2 Particles, J Am Ceram Soc, 90, 3005, 10.1111/j.1551-2916.2007.01837.x
Zhang, 2015, Evolution of textured microstructure of Li-doped (K, Na)NbO3 ceramics prepared by reactive templated grain growth, J Alloy Compd, 624, 158, 10.1016/j.jallcom.2014.11.071
Bai, 2016, Enhanced electromechanical properties in <00l>-textured (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics, Ceram Int, 42, 3429, 10.1016/j.ceramint.2015.10.139
Schultheiß, 2017, Effect of degree of crystallographic texture on ferroand piezoelectric properties of Ba0.85Ca0.15TiO3 piezoceramics, J Am Ceram Soc, 100, 2098, 10.1111/jace.14749
Liu, 2017, Exceptionally High Piezoelectric Coefficient and Low Strain Hysteresis in Grain-Oriented (Ba, Ca)(Ti, Zr)O3 through Integrating Crystallographic Texture and Domain Engineering, ACS Appl Mater Interfaces, 9, 29863, 10.1021/acsami.7b08160
Liu, 2018, Significantly Enhanced Energy-Harvesting Performance and Superior Fatigue-Resistant Behavior in [001]c-Textured BaTiO3-Based Lead-Free Piezoceramics, ACS Appl Mater Interfaces, 10, 31488, 10.1021/acsami.8b10361
Sun, 2019, Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites, J Mater Chem A, 7, 3603, 10.1039/C8TA10312G
Yilmaz H, Trolier S, Mckinstry, Messing GL. (Reactive) Templated Grain Growth of Textured NBT-BT Ceramics—II Dielectric and Piezoelectric Properties. J Electroceram 2003;11:217–26.
Yan, 2007, Fabrication and electrical properties of textured Na1/2Bi1/2TiO3-BaTiO3 ceramics by reactive-templated grain growth, J Electroceram, 21, 246, 10.1007/s10832-007-9140-4
Gao, 2008, Fabrication and dielectric properties of textured Na0.5Bi0.5TiO3-BaTiO3 ceramics by RTGG method, J Mater Sci: Mater Electron, 19, 1228
Zhao, 2008, Preparation and characterization of textured Bi0.5(Na0.8K0.2)0.5TiO3 ceramics by reactive templated grain growth, Mater Lett, 62, 1219, 10.1016/j.matlet.2007.08.016
Su, 2012, Densification and texture evolution of Bi4Ti3O12 templated Na0.5Bi0.5TiO3–BaTiO3 ceramics: Effects of excess Bi2O3, J Alloy Compd, 519, 25, 10.1016/j.jallcom.2011.11.061
Fancher, 2013, Poling effect on d33 in textured Bi0.5Na0.5TiO3-based materials, Scr Mater, 68, 443, 10.1016/j.scriptamat.2012.10.047
Chen, 2016, Effects of texture on microstructure, Raman vibration, and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics, J Eur Ceram Soc, 36, 1613, 10.1016/j.jeurceramsoc.2016.01.038
Jantunen, 2004, Tape casting of ferroelectric, dielectric, piezoelectric and ferromagnetic materials, J Eur Ceram Soc, 24, 1077, 10.1016/S0955-2219(03)00552-1
Messing, 2004, Templated Grain Growth of Textured Piezoelectric Ceramics, Crit Rev Solid State Mater Sci, 29, 45, 10.1080/10408430490490905
Zhang, 2019, Preparation and anisotropic properties of textured structural ceramics: A review, J Adv Ceram, 8, 289, 10.1007/s40145-019-0325-5
Liu, 2015, Progress on the fabrication of lead-free textured piezoelectric ceramics: perspectives over 25 years, J Mater Sci: Mater Electron, 26, 4425
Jiang, 2015, Synthesis and characterization of Na0.5Bi0.5TiO3 platelets with preferred orientation using Aurivillius precursors, Ceram Int, 41, 6858, 10.1016/j.ceramint.2015.01.135
Hussain, 2015, Plate-like Na0.5Bi0.5TiO3 particles synthesized by topochemical microcrystal conversion method, J Eur Ceram Soc, 35, 919, 10.1016/j.jeurceramsoc.2014.10.004
Zhang, 2015, Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics, J Eur Ceram Soc, 35, 2501, 10.1016/j.jeurceramsoc.2015.03.012
Negishi, 2012, Approaches for preparing<111>-textured Bi0.5Na0.5TiO3-based ceramics by hetero-templated grain growth, Ceram Int, 38, 5103, 10.1016/j.ceramint.2012.03.013
Cha, 2017, Mechanism of Bi0.5Na0.5TiO3 and Bi4.5Na0.5Ti4O15 template synthesis during topochemical microcrystal conversion and texturing of Bi0.5(Na0.8K0.2)0.5TiO3 piezoelectric ceramics, J Eur Ceram Soc, 37, 967, 10.1016/j.jeurceramsoc.2016.10.016
Maurya, 2013, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response, J Mater Chem C, 1, 2102, 10.1039/c3tc00619k
Motohashi, 2007, Development of texture in Bi0.5Na0.5TiO3 prepared by reactive-templated grain growth process, J Eur Ceram Soc, 27, 3633, 10.1016/j.jeurceramsoc.2007.02.003
Liao, 2016, Origin of thermal depolarization in piezoelectric ceramics, Scr Mater, 115, 14, 10.1016/j.scriptamat.2015.12.030
Aksel E, Forrester JS, Kowalski B, Jones JL, Thomas2 PA. Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction. Appl Phys Lett 2011;99:222901.
Jo, 2013, Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3, Appl Phys Lett, 102, 10.1063/1.4805360
Anton, 2011, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics, J Appl Phys, 110, 10.1063/1.3660253
Woodward, 2014, Investigation of the depolarisation transition in Bi-based relaxor ferroelectrics, J Appl Phys, 115, 10.1063/1.4869132
Davies, 2011, Enhanced High-Temperature Piezoelectric Coefficients and Thermal Stability of Fe- and Mn-Substituted Na0.5Bi0.5TiO3 Ceramics, J Am Ceram Soc, 94, 1314, 10.1111/j.1551-2916.2011.04441.x
Wang, 2014, Structural stability and depolarization of manganese-doped (Bi0.5Na0.5)1−xBaxTiO3 relaxor ferroelectrics, J Appl Phys, 116, 10.1063/1.4898322
Anthoniappen, 2016, Dielectric, ferroelectric, and depolarization properties of B-site manganese-doped 0.925(Bi0.5Na0.5)TiO3–0.075BaTiO3 solid solutions, Ceram Int, 42, 8402, 10.1016/j.ceramint.2016.02.056
Peng, 2017, Enhanced ferroelectric properties and thermal stability of Mn-doped 0.96(Bi0.5Na0.5)TiO3-0.04BiAlO3 ceramics, J Am Ceram Soc, 100, 1030, 10.1111/jace.14645
Li, 2017, Delayed thermal depolarization of Bi0.5Na0.5TiO3-BaTiO3 by doping acceptor Zn2+ with large ionic polarizability, J Appl Phys, 122, 10.1063/1.5012889
Verma, 2018, Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.50Bi0.50)TiO3-0.06BaTiO3 ceramics, J Appl Phys, 123, 10.1063/1.5036927
Cao, 2015, Enhanced depolarization temperature in 0.90NBT–0.05KBT–0.05BT ceramics induced by BT nanowires, J Phys Chem Solids, 78, 41, 10.1016/j.jpcs.2014.10.004
Riemer, 2017, Stress-induced phase transition in lead-free relaxor ferroelectric composites, Acta Mater, 136, 271, 10.1016/j.actamat.2017.07.008
Bai, 2017, Lead-free BNT-based composite materials: enhanced depolarization temperature and electromechanical behavior, Dalton Trans, 46, 15340, 10.1039/C7DT02846F
Mahajan, 2017, Effect of phase transitions on thermal depoling in lead-free 0.94(Bi0.5Na0.5TiO3)–0.06(BaTiO3) based piezoelectrics, J Phys Chem C, 121, 5709, 10.1021/acs.jpcc.6b12501
Bai, 2018, Enhanced thermal stability, hardening of piezoelectric property, and mediated electromechanical response in (Bi0.5Na0.5)TiO3-based piezoceramics via composite approach, Ceram Int, 44, 17022, 10.1016/j.ceramint.2018.06.145
Deng, 2018, 0–3 type magnetoelectric 0.94Na0.5Bi0.5TiO3-0.06BaTiO3: CoFe2O4 composite ceramics with a deferred thermal depolarization, J Eur Ceram Soc, 38, 1407, 10.1016/j.jeurceramsoc.2017.11.004
Jonker, 1972, The Nature of Aging in Ferroelectric Ceramics, J Am Ceram Soc, 55, 57, 10.1111/j.1151-2916.1972.tb13404.x
Carl, 1977, Electrical after-effects in Pb(Ti, Zr)O3 ceramics, Ferroelectrics, 17, 473, 10.1080/00150197808236770
Lupascu, 2005, Fatigue In Bulk Lead Zirconate Titanate Actuator Materials, Adv Eng Mater, 7, 882, 10.1002/adem.200500117
Zhang, 2005, Heterogeneity of fatigue in bulk lead zirconate titanate, Acta Mater, 53, 2203, 10.1016/j.actamat.2005.01.048
Balke, 2009, Degradation of lead-zirconate-titanate ceramics under different dc loads, J Appl Phys, 105, 10.1063/1.3126707
Genenko, 2015, Mechanisms of aging and fatigue in ferroelectrics, Mater Sci Eng, B, 192, 52, 10.1016/j.mseb.2014.10.003
Pan, 1992, Fatigue of Ferroelectric Polarization and the Electric Field Induced Strain in Lead Lanthanum Zirconate Titanate Ceramics, J Am Ceram Soc, 75, 1534, 10.1111/j.1151-2916.1992.tb04221.x
Jiang, 1994, Electric Fatigue in Lead Zirconate Titanate Ceramics, J Am Ceram Soc, 77, 211, 10.1111/j.1151-2916.1994.tb06979.x
Jiang, 1994, Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics, J Appl Phys, 75, 7433, 10.1063/1.356637
Nuffer, 2002, Microstructural modifications of ferroelectric lead zirconate titanate ceramics due to bipolar electric fatigue, J Eur Ceram Soc, 22, 2133, 10.1016/S0955-2219(02)00017-1
Zhang Y, Lupascu D.C., Balke N, Rödel J. Near electrode fatigue in lead zirconate titanate ceramics. J De Phys IV 2005;128:97–103.
Balke, 2007, Fatigue of Lead Zirconate Titanate Ceramics. I: Unipolar and DC Loading, J Am Ceram Soc, 90, 1081, 10.1111/j.1551-2916.2007.01520.x
Balke, 2007, Fatigue of Lead Zirconate Titanate Ceramics. II: Sesquipolar Loading, J Am Ceram Soc, 90, 1088, 10.1111/j.1551-2916.2007.01521.x
Zhukov, 2010, Genenko YA and Seggern Hv. Effect of bipolar electric fatigue on polarization switching in lead-zirconate-titanate ceramics, J Appl Phys, 108, 10.1063/1.3452326
Warren, 1995, Polarization suppression in Pb(Zr, Ti)O3 thin films, J Appl Phys, 77, 6695, 10.1063/1.359083
Scott, 1991, Quantitative measurement of space-charge effects in lead zirconate-titanate memories, J Appl Phys, 70, 382, 10.1063/1.350286
Colla, 1997, Fatigued state of the Pt-PZT-Pt system, Integr Ferroelectr, 18, 19, 10.1080/10584589708221682
Larsen, 1994, Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness: Blocking layer model, J Appl Phys, 76, 2405, 10.1063/1.357589
Tagantsev, 2001, Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features, J Appl Phys, 90, 1387, 10.1063/1.1381542
Luo, 2011, Bipolar and unipolar fatigue of ferroelectric BNT-based lead-free piezoceramics, J Am Ceram Soc, 94, 529, 10.1111/j.1551-2916.2010.04101.x
Luo, 2011, Effect of ferroelectric long-range order on the unipolar and bipolar electric fatigue in Bi1/2Na1/2TiO3-based lead-free piezoceramics, J Am Ceram Soc, 94, 3927, 10.1111/j.1551-2916.2011.04605.x
Ehmke, 2011, Stabilization of the fatigue-resistant phase by CuO addition in (Bi1/2Na1/2)TiO3-BaTiO3, J Am Ceram Soc, 94, 2473, 10.1111/j.1551-2916.2010.04379.x
Patterson, 2012, Bipolar piezoelectric fatigue of Bi(Zn0.5Ti0.5)O3-(Bi0.5K0.5)TiO3-(Bi0.5Na0.5)TiO3 Pb-free ceramics, Appl Phys Lett, 101, 10.1063/1.4738770
Simons, 2012, Domain fragmentation during cyclic fatigue in 94%(Bi1/2Na1/2)TiO3-6%BaTiO3, J Appl Phys, 112, 10.1063/1.4745900
Guo, 2015, Nanofragmentation of ferroelectric domains during polarization fatigue, Adv Funct Mater, 25, 270, 10.1002/adfm.201402740
Shi, 2017, Electric-field induced phase transition and fatigue behaviors of (Bi0.5+x/2Na0.5-x/2)0.94Ba0.06Ti1-xFexO3 ferroelectrics, J Am Ceram Soc, 100, 1080, 10.1111/jace.14683
Damjanovic, 1998, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep Prog Phys, 61, 1267, 10.1088/0034-4885/61/9/002
Devonshire, 1954, Theory of ferroelectrics, Adv Phys, 3, 85, 10.1080/00018735400101173
Kay, 1955, Electrostriction, Rep Prog Phys, 18, 230, 10.1088/0034-4885/18/1/306
Newnham, 1997, Electrostriction: Nonlinear electromechanical coupling in solid dielectrics, J Phys Chem B, 101, 10141, 10.1021/jp971522c
Uchino, 1981, Electrostrictive Effects in Anti-Ferroelectric Perovskites, J Appl Phys, 52, 1455, 10.1063/1.329780
Li, 1991, The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic, J Appl Phys, 69, 7219, 10.1063/1.347616
Lynch, 1996, The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT, Acta Mater, 44, 4137, 10.1016/S1359-6454(96)00062-6
Fang, 1999, Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic, J Mater Sci, 34, 4001, 10.1023/A:1004603729657
Hoffmann, 2001, Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics, Acta Mater, 49, 1301, 10.1016/S1359-6454(01)00025-8
Yang, 2003, Field-induced strain associated with polarization reversal in a rhombohedral ferroelectric ceramic, J Mater Res, 18, 2869, 10.1557/JMR.2003.0400
Bolten, 2004, Reversible and irreversible piezoelectric and ferroelectric response in ferroelectric ceramics and thin films, J Eur Ceram Soc, 24, 725, 10.1016/S0955-2219(03)00317-0
Achuthan, 2005, Domain switching in ferroelectric ceramic materials under combined loads, J Appl Phys, 97, 10.1063/1.1925327
Liu, 2007, Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading, Appl Phys Lett, 90
Kungl, 2007, Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data, Acta Mater, 55, 1849, 10.1016/j.actamat.2006.10.046
Achuthan, 2009, A study of mechanisms of domain switching in a ferroelectric material via loading rate effect, Acta Mater, 57, 3868, 10.1016/j.actamat.2009.04.043
Sawaguchi, 1951, Antiferroelectric Structure of Lead Zirconate, Phys Rev, 83, 1078, 10.1103/PhysRev.83.1078
Liu, 2011, A brief review on the model antiferroelectric PbZrO3 perovskite-like material, Zeitschrift für Kristallographie-Cryst Mater, 226, 163, 10.1524/zkri.2011.1336
Shirane, 1954, Dielectric Properties and Phase Transitions of NaNbO3 and (Na, K)NbO3, Phys Rev, 96, 581, 10.1103/PhysRev.96.581
Cross, 1958, Electric Double Hysteresis in (KxNa1-x)NbO3 Single Crystals, Nature, 181, 178, 10.1038/181178a0
Darlington, 1973, The low-temperature phase transition of sodium niobate and the structure of the low-temperature phase, N Acta Crystallographica, 29, 2171, 10.1107/S0567740873006308
Lanfredi, 2000, Dense ceramics of NaNbO3 produced from powders prepared by a new chemical route, J Eur Ceram Soc, 20, 983, 10.1016/S0955-2219(99)00223-X
Francombe, 1958, Structural and electrical properties of silver niobate and silver tantalate, Acta Crystallogr A, 11, 175, 10.1107/S0365110X58000463
Fu, 2007, AgNbO3: A lead-free material with large polarization and electromechanical response, Appl Phys Lett, 90, 10.1063/1.2751136
Hao, 2014, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials, Prog Mater Sci, 63, 1, 10.1016/j.pmatsci.2014.01.002
Park, 1997, Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics, J Appl Phys, 82, 1798, 10.1063/1.365982
Shebanov, 1994, Electric field-induced antiferroelectric-to-ferroelectric phase transition in lead zirconate titanate stannate ceramics modified with lanthanum, J Appl Phys, 76, 4301, 10.1063/1.357315
Ren, 2004, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nat Mater, 3, 91, 10.1038/nmat1051
Liu, 2006, Ferroelectric aging effect in hybrid-doped BaTiO3 ceramics and the associated large recoverable electrostrain, Appl Phys Lett, 89, 10.1063/1.2360933
Zhang, 2004, Large recoverable electrostrain in Mn-doped (Ba, Sr)TiO3 ceramics, Appl Phys Lett, 85, 5658, 10.1063/1.1829394
Feng, 2007, Aging effect and large recoverable electrostrain in Mn-doped KNbO3-based ferroelectrics, Appl Phys Lett, 91, 10.1063/1.2756355
Liu, 2011, Large digital-characterized electrostrain in Mn-doped (Pb, Sr)TiO3 electro-shape-memory ceramics, Appl Phys Lett, 99
Rödel, 2009, Perspective on the Development of Lead-free Piezoceramics, J Am Ceram Soc, 92, 1153, 10.1111/j.1551-2916.2009.03061.x
Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties, J Appl Phys, 103
Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties, J Appl Phys, 103
Hao, 2015, Ultrahigh strain response with fatigue-free behavior in (Bi0.5Na0.5)TiO3-based lead-free piezoelectric ceramics, J Phys D Appl Phys, 48, 10.1088/0022-3727/48/47/472001
Hao, 2013, Li X and Gao X. Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system, J Appl Phys, 113, 10.1063/1.4795511
Li, 2016, Grain size dependent electrostrain in Bi1/2Na1/2TiO3-SrTiO3 incipient piezoceramics, J Eur Ceram Soc, 36, 2849, 10.1016/j.jeurceramsoc.2016.04.024
Bai, 2016, Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics, Dalton Trans, 45, 8573, 10.1039/C6DT00906A
Zhao, 2018, Large strain of temperature insensitive in (1–x)(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–xSr0.7La0.2TiO3 lead-free ceramics, Ceram Int, 44, 11331, 10.1016/j.ceramint.2018.03.182
Fan, 2018, Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezoceramics, J Eur Ceram Soc, 38, 4404, 10.1016/j.jeurceramsoc.2018.05.028
Wu, 2020, Excellent temperature stability with giant electrostrain in Bi0.5Na0.5TiO3-based ceramics, Scr Mater, 179, 70, 10.1016/j.scriptamat.2019.12.022
Hiruma, 2008, Piezoelectric Properties of (Bi1/2Na1/2)TiO3 Based Solid Solution for Lead-Free High-Power Applications, Jpn J Appl Phys, 47, 7659, 10.1143/JJAP.47.7659
Wang, 2012, Temperature-Dependent Properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 Lead-Free Piezoceramics, J Am Ceram Soc, 95, 2241, 10.1111/j.1551-2916.2012.05162.x
He, 2020, Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics, J Mater Chem C, 8, 2411, 10.1039/C9TC04864B
Hao, 2012, Phase transitions, relaxor behavior, and electrical properties in (1–x)(Bi0.5Na0.5)TiO3-x(K0.5Na0.5)NbO3 lead-free piezoceramics, J Mater Res, 27, 2943, 10.1557/jmr.2012.328
Rahman, 2015, Effect of sintering temperature on the electromechanical properties of 0.945Bi0.5Na0.5TiO3-0.055BaZrO3 ceramics, J Korean Phys Soc, 66, 1072, 10.3938/jkps.66.1072
Rahman, 2014, Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics, J Alloy Compd, 593, 97, 10.1016/j.jallcom.2014.01.031
Ullah, 2011, Phase Transition, Electrical Properties, and Temperature-Insensitive Large Strain in BiAlO3-Modified Bi0.5(Na0.75K0.25)0.5TiO3 Lead-Free Piezoelectric Ceramics, J Am Ceram Soc, 94, 3915, 10.1111/j.1551-2916.2011.04595.x
Bai, 2016, Electromechanical properties and structure evolution in BiAlO3-modified Bi0.5Na0.5TiO3-BaTiO3 lead-free piezoceramics, J Alloy Compd, 667, 6, 10.1016/j.jallcom.2016.01.144
Chen, 2017, Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3, J Eur Ceram Soc, 37, 2365, 10.1016/j.jeurceramsoc.2017.02.009
Jia, 2018, Large electrostrain response in binary Bi1/2Na1/2TiO3-Ba(Mg1/3Nb2/3)O3 solid solution ceramics, J Alloy Compd, 741, 7, 10.1016/j.jallcom.2017.12.274
Maqbool, 2014, Enhanced electric field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–BaTiO3–SrZrO3 lead-free ceramics, Ceram Int, 40, 11905, 10.1016/j.ceramint.2014.04.026
Janbua, 2016, High Strain Response of the (1–x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBaSnO3 Lead Free Piezoelectric Ceramics System, Ferroelectrics, 490, 13, 10.1080/00150193.2015.1070655
Li, 2017, Large strain response in Bi4Ti3O12 modified BNT-BT piezoelectric ceramics, Ceram Int, 43, 1008, 10.1016/j.ceramint.2016.10.033
Wei, 2018, Composition-induced phase evolution and high strain response in Ba(Zn1/3Nb2/3)O3-modified (Bi0.5Na0.5)TiO3-based lead-free ferroelectrics. Rsc, Advances, 8, 12269
Gong, 2019, Large electric field-induced strain in ternary Bi0.5Na0.5TiO3-BaTiO3-Sr2MnSbO6 lead-free ceramics, Ceram Int, 45, 7173, 10.1016/j.ceramint.2018.12.224
Wang, 2019, Tailoring electromechanical performance in BiScO3-modified Bi0.5Na0.5TiO3-based lead-free piezoceramics, J Mater Sci: Mater Electron, 31, 1491
Gong, 2020, Composition-dependent phase evolution and enhanced electrostrain properties of (Bi0.5Na0.5)TiO3–BaTiO3–Bi(Li0.5Ta0.5)O3 lead-free ceramics, J Alloy Compd, 818, 10.1016/j.jallcom.2019.152822
Ullah, 2012, Structure, ferroelectric properties, and electric field-induced large strain in lead-free Bi0.5(Na, K)0.5TiO3–(Bi0.5La0.5)AlO3 piezoelectric ceramics, Ceram Int, 38, S363, 10.1016/j.ceramint.2011.05.013
Hong, 2012, Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution, J Intell Mater Syst Struct, 24, 1343, 10.1177/1045389X12447986
Lee, 2013, Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics exhibiting large strain with small hysteresis, Ceram Int, 39, S705, 10.1016/j.ceramint.2012.10.166
Hao, 2013, Large Strain Response in 0.99(Bi0.5Na0.4K0.1)TiO3-0.01(KxNa1-x)NbO3 Lead-Free Ceramics Induced by the Change of K/Na Ratio in (KxNa1-x)NbO3, J Am Ceram Soc, 96, 3133, 10.1111/jace.12462
Hao, 2013, Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics, J Appl Phys, 114, 10.1063/1.4816047
Jaita, 2014, Dielectric, ferroelectric and electric field-induced strain behavior of Ba(Ti0.90Sn0.10)O3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoelectrics, J Alloy Compd, 596, 98, 10.1016/j.jallcom.2014.01.183
Hussain, 2014, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics, Mater Chem Phys, 143, 1282, 10.1016/j.matchemphys.2013.11.035
Sumang, 2015, Large strain in lead-free piezoelectric (1–x−y)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3–yBi0.5Li0.5TiO3 system near MPB prepared via the combustion technique, Ceram Int, 41, S127, 10.1016/j.ceramint.2015.03.227
Lee, 2015, Phase transition and electrical characteristics of Bi0.5(Na0.78K0.22)0.5TiO3–BiFeO3 lead-free piezoelectric ceramics, Ceram Int, 41, 10298, 10.1016/j.ceramint.2015.04.063
Jaita, 2015, Large electric field-induced strain and piezoelectric responses of lead-free Bi0.5(Na0.80K0.20)0.5TiO3-Ba(Ti0.90Sn0.10)O3 ceramics near morphotropic phase boundary, Electron Mater Lett, 11, 828, 10.1007/s13391-015-4495-1
Guo, 2015, Origin of the large strain response in tenary SrTi0.8Zr0.2O3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoceramics, J Mater Sci, 50, 403, 10.1007/s10853-014-8599-z
Hao, 2015, Large electric-field-induced strain in SrZrO3 modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free electromechanical ceramics with fatigue-resistant behavior, J Alloy Compd, 647, 857, 10.1016/j.jallcom.2015.06.151
Hao, 2015, Large strain response and fatigue-resistant behavior in lead-free Bi0.5(Na0.80K0.20)0.5TiO3–(K0.5Na0.5)MO3 (M = Sb, Ta) ceramics. RSC, Advances, 5, 82605
Li, 2019, Thermally-stable large strain in Bi(Mn0.5Ti0.5)O3 modified 0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3 ceramics, J Eur Ceram Soc, 39, 1827, 10.1016/j.jeurceramsoc.2019.01.009
Wei, 2019, Sr(Zn1/3Nb2/3)O3-induced R3c to P4bm transition and large field-induced strain in 0.80(Bi0.5Na0.5)TiO3–0.20SrTiO3 ceramics, J Mater Res, 34, 1210, 10.1557/jmr.2019.91
Wu, 2018, Large electromechanical strain and electrostrictive effect in (1–x)(Bi0.5Na0.5TiO3–SrTiO3)–xLiNbO3 ternary lead-free piezoelectric ceramics, J Mater Sci: Mater Electron, 30, 200
Yin, 2016, Electrical Properties and Relaxor Phase Evolution of Li-Modified BNT-BKT-BT Lead-Free Ceramics, J Am Ceram Soc, 99, 2354, 10.1111/jace.14247
Dinh, 2013, Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J Korean Phys Soc, 62, 1004, 10.3938/jkps.62.1004
Liu, 2014, Evolution of structure and electrical properties with lanthanum content in [(Bi1/2Na1/2)0.95Ba0.05]1−xLaxTiO3 ceramics, J Eur Ceram Soc, 34, 2997, 10.1016/j.jeurceramsoc.2014.03.017
Yao, 2015, Electric field-induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics, ACS Appl Mater Interfaces, 7, 5066, 10.1021/acsami.5b00420
Lee, 2010, Enhanced Electric-Field-Induced Strain at the Ferroelectric-Electrostrcitive Phase Boundary of Yttrium-Doped Bi0.5(Na0.82K0.18)0.5TiO3 Lead-Free Piezoelectric Ceramics, J Korean Phys Soc, 57, 892, 10.3938/jkps.57.892
Zuo, 2008, Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics, J Eur Ceram Soc, 28, 871, 10.1016/j.jeurceramsoc.2007.08.011
Pham, 2010, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater Lett, 64, 2219, 10.1016/j.matlet.2010.07.048
Li, 2017, Giant field-induced strain in Nb2O5-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Ceram Int, 43, 5367, 10.1016/j.ceramint.2017.01.084
Obilor, 2018, Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics, Mater Res Bull, 97, 385, 10.1016/j.materresbull.2017.09.032
Hussain, 2010, Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics, Sens Actuators, A, 158, 84, 10.1016/j.sna.2009.12.027
Chen, 2014, Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics, J Eur Ceram Soc, 34, 4223, 10.1016/j.jeurceramsoc.2014.05.044
Han, 2013, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J Appl Phys, 113, 10.1063/1.4801893
Xi, 2020, Large strain with low hysteresis in Sn-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoceramics, J Mater Sci, 55, 1388, 10.1007/s10853-019-04154-8
Zhou, 2018, Ferroelectric-quasiferroelectric-ergodic relaxor transition and multifunctional electrical properties in Bi0.5Na0.5TiO3-based ceramics, J Am Ceram Soc, 101, 1554, 10.1111/jace.15308
Do, 2012, Low temperature sintering of lead-free Bi0.5(Na0.82K0.18)0.5TiO3 piezoelectric ceramics by co-doping with CuO and Nb2O5, Ceram Int, 38S, S359, 10.1016/j.ceramint.2011.05.012
Jin, 2014, Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions, J Alloy Compd, 585, 185, 10.1016/j.jallcom.2013.09.152
Li, 2016, Large strain response in (Mn, Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 lead-free piezoelectric ceramics, Ceram Int, 42, 14886, 10.1016/j.ceramint.2016.06.127
Hao, 2016, Field-induced large strain in lead-free (Bi0.5Na0.5)1−xBaxTi0.98(Fe0.5Ta0.5)0.02O3 piezoelectric ceramics, J Alloy Compd, 677, 96, 10.1016/j.jallcom.2016.03.246
Li, 2016, 0.46% unipolar strain in lead-free BNT-BT system modified with Al and Sb, Mater Lett, 184, 152, 10.1016/j.matlet.2016.07.150
Xie, 2018, Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics, J Alloy Compd, 743, 73, 10.1016/j.jallcom.2018.01.367
Wei, 2019, Giant strain of 0.65% obtained in B-site complex cations (Zn1/3Nb2/3)4+-modified BNT-7BT ceramics, J Alloy Compd, 782, 611, 10.1016/j.jallcom.2018.12.210
Nguyen, 2012, Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta, J Alloy Compd, 511, 237, 10.1016/j.jallcom.2011.09.043
Dung, 2015, Role of Sintering Temperature on Giant Field-Induced Strain in Lead-Free Bi0.5(Na, K)0.5TiO3-Based Ceramics, Ferroelectrics, 474, 113, 10.1080/00150193.2015.996458
Nguyen, 2012, Enhancement in the Microstructure and the Strain Properties of Bi1/2(Na, K)1/2TiO3-based Lead-free Ceramics by Li Substitution, J Korean Phys Soc, 61, 895, 10.3938/jkps.61.895
Malik, 2016, Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics, J Alloy Compd, 682, 302, 10.1016/j.jallcom.2016.04.297
Zhang, 2018, Modulation of electrostriction and strain response in bismuth sodium titanate-based ceramics, J Am Ceram Soc, 101, 3005, 10.1111/jace.15459
Ni, 2012, Effects of A-site vacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi0.5+x(Na0.82K0.18)0.5−3xTiO3 and Bi0.5+y(Na0.82K0.18)0.5TiO3, J Alloy Compd, 541, 150, 10.1016/j.jallcom.2012.06.129
Liu, 2017, Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry, J Eur Ceram Soc, 37, 4585, 10.1016/j.jeurceramsoc.2017.05.042
Tong, 2016, Giant electrostrain under low driving field in Bi1/2Na1/2TiO3-SrTiO3 ceramics for actuator applications, Ceram Int, 42, 16153, 10.1016/j.ceramint.2016.07.133
Lee, 2011, Electric field-induced deformation behavior in mixed Bi0.5Na0.5TiO3 and Bi0.5(Na0.75K0.25)0.5TiO3-BiAlO3, Appl Phys Lett, 99
Khaliq, 2018, Ferroelectric seeds-induced phase evolution and large electrostrain under reduced poling field in bismuth-based composites, Ceram Int, 44, 13278, 10.1016/j.ceramint.2018.04.157
Sheeraz, 2019, Stress driven high electrostrain at low field in incipient piezoelectrics, J Eur Ceram Soc, 39, 4688, 10.1016/j.jeurceramsoc.2019.07.049
Park, 1997, Variations of Structure and Dielectric Properties on Substituting A-site Cations for Sr2+ in (Na1/2Bi1/2)TiO3, J Mater Res, 12, 2152, 10.1557/JMR.1997.0288
Rout, 2010, Dielectric and Raman scattering studies of phase transitions in the (100–x)Na0.5Bi0.5TiO3–xSrTiO3 system, J Appl Phys, 108, 10.1063/1.3490781
Li, 2014, Large Strain Response and Fatigue-Resistant Behavior in Ternary Bi0.5Na0.5TiO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 Solid Solutions, J Am Ceram Soc, 97, 3615, 10.1111/jace.13176
Ullah, 2013, Large strain under a low electric field in lead-free bismuth-based piezoelectrics, Appl Phys Lett, 103, 10.1063/1.4813420
Dong, 2018, Large strain response with low driving field in Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3-Bi(Mg2/3Nb1/3)O3 ceramics, J Am Ceram Soc, 101, 3947, 10.1111/jace.15589
Zhu, 2018, Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 lead-free piezoceramics, Ceram Int, 44, 7851, 10.1016/j.ceramint.2018.01.220
Acosta, 2014, Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 Lead-Free Incipient Piezoceramic, J Am Ceram Soc, 97, 1937, 10.1111/jace.12884
Wang, 2012, Large Strain Response in the Ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 Solid Solutions, J Am Ceram Soc, 95, 1955, 10.1111/j.1551-2916.2012.05119.x
Jin, 2014, dielectric properties and large strain response in Zr-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free ceramics, Ceram Int, 40, 6143, 10.1016/j.ceramint.2013.11.066
Qian, 2018, Nanoscale origins of small hysteresis and remnant strain in Bi0.5Na0.5TiO3-based lead-free ceramics, J Eur Ceram Soc, 38, 361, 10.1016/j.jeurceramsoc.2017.06.003
Fan, 2019, Large strain under low driving field in lead-free relaxor/ferroelectric composite ceramics, J Am Ceram Soc, 102, 4113, 10.1111/jace.16256
Zhang, 2009, High-Strain Lead-free Antiferroelectric Electrostrictors, Adv Mater, 21, 4716, 10.1002/adma.200901516
Zhang, 2010, Phase diagram and electrostrictive properties of Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 ceramics, Appl Phys Lett, 97
Kumar, 2013, Electromechanical strain and bipolar fatigue in Bi(Mg1/2Ti1/2)O3-(Bi1/2K1/2)TiO3-(Bi1/2Na1/2)TiO3 ceramics, J Appl Phys, 114, 10.1063/1.4817524
Tian, 2014, Bipolar fatigue-resistant behavior in ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions, Scr Mater, 83, 25, 10.1016/j.scriptamat.2014.03.027
Zhu, 2019, Bipolar and unipolar fatigue property in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–SrTiO3 lead-free piezoelectric ceramics, Physica B: Physics of Condensed Matter, 575 411716
Hao, 2017, Fatigue-resistant, temperature-insensitive strain behavior and strong red photoluminescence in Pr-modified 0.92(Bi0.5Na0.5)TiO3–0.08(Ba0.90Ca0.10)(Ti0.92Sn0.08)O3 lead-free ceramics, J Eur Ceram Soc, 37, 877, 10.1016/j.jeurceramsoc.2016.09.015
Liu, 2017, Pressure driven depolarization behavior of Bi0.5Na0.5TiO3 based lead-free ceramics, Appl Phys Lett, 110, 10.1063/1.4984088
Simons, 2011, Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3–6%BaTiO3, Appl Phys Lett, 98, 10.1063/1.3557049
Zhou, 2019, Electrical properties and relaxor phase evolution of Nb-Modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-SrTiO3 lead-free ceramics, J Eur Ceram Soc, 39, 2310, 10.1016/j.jeurceramsoc.2019.02.008
Li, 2018, Ferroelectric P4mm to relaxor P4bm transition and temperature-insensitive large strains in Bi(Mg0.5Ti0.5)O3-modified tetragonal 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 lead-free ferroelectric ceramics, J Eur Ceram Soc, 38, 1381, 10.1016/j.jeurceramsoc.2017.12.022
Kang, 2019, BNT-based multi-layer ceramic actuator with enhanced temperature stability, J Alloy Compd, 771, 541, 10.1016/j.jallcom.2018.08.311
Malik, 2015, Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications, J Am Ceram Soc, 98, 3842, 10.1111/jace.13722
Cao, 2005, The strain limits on switching, Nat Mater, 4, 727, 10.1038/nmat1506
Chiang, 1998, Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family, Appl Phys Lett, 73, 3683, 10.1063/1.122862
Park, 2014, Solid-state conversion of (Na1/2Bi1/2)TiO3-BaTiO3-(K1/2Na1/2)NbO3 single crystals and their piezoelectric properties, Appl Phys Lett, 104, 10.1063/1.4881615
Bai, 2013, Structure and strain behavior of <001> textured BNT-based ceramics by template grain growth, Mater Lett, 97, 137, 10.1016/j.matlet.2013.01.088
Bai, 2014, Effect of SrTiO3 template on electric properties of textured BNT–BKT ceramics prepared by templated grain growth process, J Alloy Compd, 603, 149, 10.1016/j.jallcom.2014.03.033
Fancher, 2014, Effect of Texture on Temperature-Dependent Properties of K0.5Na0.5NbO3 Modified Bi1/2Na1/2TiO3-xBaTiO3, J Am Ceram Soc, 97, 2557, 10.1111/jace.12986
Hussain, 2015, Na0.5Bi0.5TiO3–BaZrO3 textured ceramics prepared by reactive templated grain growth method, Ceram Int, 41, S26, 10.1016/j.ceramint.2015.03.188
Bai, 2016, Effect of different templates and texture on structure evolution and strain behavior of <001>-textured lead-free piezoelectric BNT-based ceramics, J Alloy Compd, 656, 13, 10.1016/j.jallcom.2015.09.209
Jiang, 2016, Grain oriented Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant strain response derived from single-crystalline Na0.5Bi0.5TiO3-BaTiO3 templates, J Eur Ceram Soc, 36, 1377, 10.1016/j.jeurceramsoc.2015.12.025
Bai, 2017, Low electric field-driven giant strain response in <001> textured BNT-based lead-free piezoelectric materials, J Mater Sci, 52, 3169, 10.1007/s10853-016-0606-0
Chen, 2018, The giant strain response mechanism in textured Mn-modified 0.925(Bi0.5Na0.5)TiO3-0.075BaTiO3 relaxor ferroelectric ceramics, J Alloy Compd, 737, 705, 10.1016/j.jallcom.2017.12.173
Ma, 2015, Preparation and enhanced electric-field-induced strain of textured 91BNT–6BT–3KNN lead-free piezoceramics by TGG method, J Mater Sci: Mater Electron, 27, 3076
Zou, 2016, Texture development and enhanced electromechanical properties in <00l>-textured BNT-based materials, Mater Lett, 184, 139, 10.1016/j.matlet.2016.08.039
Su Lee, 2012, Electric field induced polarization and strain of Bi-based ceramic composites, J Appl Phys, 112, 10.1063/1.4770372
Lee, 2013, Effect of Sintering Time on Strain in Ceramic Composite Consisting of 0.94Bi0.5(Na0.75K0.25)0.5TiO3–0.06BiAlO3 with (Bi0.5Na0.5)TiO3, Jpn J Appl Phys, 52
Zhang, 2015, Large Strain in Relaxor/Ferroelectric Composite Lead-Free Piezoceramics, Adv Electron Mater, 1, 1500018, 10.1002/aelm.201500018
Groh, 2014, Tailoring Strain Properties of (0.94−x)Bi1/2Na1/2TiO3-0.06BaTiO3-xK0.5Na0.5NbO3 Ferroelectric/Relaxor Composites, J Am Ceram Soc, 97, 1465, 10.1111/jace.12783
Dinh, 2015, Enhanced Low-Field Strain in Bi-Based Lead-Free Ferroelectric-Relaxor Composites, Ferroelectrics, 487, 142, 10.1080/00150193.2015.1071619
Dinh, 2016, Giant strain in lead-free relaxor/ferroelectric piezocomposite ceramics, J Korean Phys Soc, 68, 1439, 10.3938/jkps.68.1439
Khaliq, 2017, Large strain in Bi0.5(Na0.78K0.22)0.5TiO3–Bi(Mg0.5Ti0.5)O3 based composite ceramics under low driving field, Sens Actuators, A, 258, 174, 10.1016/j.sna.2017.03.021
Saleem, 2018, Revealing of Core Shell Effect on Frequency-Dependent Properties of Bi-based Relaxor/Ferroelectric Ceramic Composites, Sci Rep, 8, 14146, 10.1038/s41598-018-32133-7
Lim, 2018, Frequency dependence of polarization and strain in Bi0.5Na0.5TiO3-SrTiO3/Bi0.5(Na0.8K0.2)0.5TiO3 composites, Sens Actuators, A, 282, 163, 10.1016/j.sna.2018.09.034
Newnham, 2005
Kuwata, 1980, Electrostrictive Coefficients of Pb(Mg1⁄3Nb2⁄3)O3 Ceramics, Jpn J Appl Phys, 19, 2099, 10.1143/JJAP.19.2099
Anderson, 1990, Development of an active truss element for control of precision structures, Opt Eng, 29, 1333, 10.1117/12.55735
Yin, 2019, Perovskite Na0.5Bi0.5TiO3: a potential family of peculiar lead-free electrostrictors, J Mater Chem A, 7, 13658, 10.1039/C9TA03140E
Ullah Khan, 2019, Boosting electrostriction and strain performance in bismuth sodium titanate-based ceramics via introducing low tolerance factor chemical modifier, Sens Actuators, A, 291, 156, 10.1016/j.sna.2019.03.043
Hao, 2013, Enhanced electrostricitive properties and thermal endurance of textured (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3 ceramics, J Appl Phys, 114, 10.1063/1.4817278
Bai, 2018, Large electrostrictive effect in lead-free (Bi0.5Na0.5)TiO3-based composite piezoceramics, Ceram Int, 44, 8628, 10.1016/j.ceramint.2018.02.081
Li, 2010, Large electrostrictive strain in lead-free Bi0.5Na0.5TiO3–BaTiO3–KNbO3 ceramics, Appl Phys A, 104, 117, 10.1007/s00339-010-6074-5
Tran, 2011, Lead-free electrostrictive bismuth perovskite ceramics with thermally stable field-induced strains, Mater Lett, 65, 2607, 10.1016/j.matlet.2011.05.059
Tran, 2013, Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient, Ceram Int, 39, S119, 10.1016/j.ceramint.2012.10.046
Wang, 2013, Large electrostrictive effect in ternary Bi0.5Na0.5TiO3-based solid solutions, J Appl Phys, 114
Shi, 2014, Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3 Solid Solutions, J Am Ceram Soc, 97, 848, 10.1111/jace.12712
Hao, 2015, Lead-free electrostrictive (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–(K0.5Na0.5)NbO3 ceramics with good thermostability and fatigue-free behavior, J Mater Sci, 50, 5328, 10.1007/s10853-015-9080-3
Bai, 2015, Phase diagram and electrostrictive effect in BNT-based ceramics, Solid State Commun, 206, 22, 10.1016/j.ssc.2015.01.004
Bai, 2016, Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics, Ceram Int, 42, 7669, 10.1016/j.ceramint.2016.01.181
Hao, 2016, Large electrostrictive effect and strong photoluminescence in rare-earth modified lead-free (Bi0.5Na0.5)TiO3-based piezoelectric ceramics, Scr Mater, 122, 10, 10.1016/j.scriptamat.2016.05.004
Pan, 2018, Large electrostrictive effect and high optical temperature sensing in Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.18Er0.02)TiO3 luminescent ferroelectrics, Ceram Int, 44, 5785, 10.1016/j.ceramint.2017.12.067
Wang, 2018, Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics, J Mater Sci, 53, 8844, 10.1007/s10853-018-2186-7
Jin, 2019, Ultra-slim pinched polarization-electric field hysteresis loops and thermally stable electrostrains in lead-free sodium bismuth titanate-based solid solutions, J Alloy Compd, 788, 1182, 10.1016/j.jallcom.2019.02.329
Li, 2020, Large electrostrictive effect and energy storage density in MnCO3 modified Na0.325Bi0.395Sr0.245□0.035TiO3 lead-free ceramics, Ceram Int, 46, 3374, 10.1016/j.ceramint.2019.10.047
Bai, 2017, Grain-orientated lead-free BNT-based piezoceramics with giant electrostrictive effect, Ceram Int, 43, 3339, 10.1016/j.ceramint.2016.11.175
Yao, 2017, Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances, Adv Mater, 29, 1601727, 10.1002/adma.201601727
Luo, 2019, Interface design for high energy density polymer nanocomposites, Chem Soc Rev, 48, 4424, 10.1039/C9CS00043G
Liu, 2019, Glass–ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications, J Mater Chem C, 7, 15118, 10.1039/C9TC05253D
Wang, 2020, Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage, J Mater Chem A, 8, 884, 10.1039/C9TA11527G
Yang, 2017, Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics, Appl Phys Lett, 111, 10.1063/1.5000980
Yang, 2019, High energy-storage density of lead-free (Sr1−1.5xBix)Ti0.99Mn0.01O3 thin films induced by Bi3+-VSr dipolar defects, PCCP, 21, 16359, 10.1039/C9CP01368G
Kong, 2020, Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications, J Am Ceram Soc, 103, 1722, 10.1111/jace.16844
Ogihara, 2009, High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics, J Am Ceram Soc, 92, 1719, 10.1111/j.1551-2916.2009.03104.x
Gao, 2011, c/a Ratio-Dependent Energy-Storage Density in (0.9-x)Bi0.5Na0.5TiO3-xBaTiO3-0.1K0.5Na0.5NbO3 Ceramics, J Am Ceram Soc, 94, 4162, 10.1111/j.1551-2916.2011.04912.x
Viola, 2012, Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics, J Phys D Appl Phys, 45, 10.1088/0022-3727/45/35/355302
Cao, 2015, High-energy storage density and efficiency of (1–x)[0.94NBT-0.06BT]-xST lead-free ceramics, Energy Technology, 3, 1198, 10.1002/ente.201500173
Liu, 2016, Energy storage properties of BiTi0.5Zn0.5O3-Bi0.5Na0.5TiO3-BaTiO3 relaxor ferroelectrics, Ceram Int, 42, 17876, 10.1016/j.ceramint.2016.08.087
Qiao, 2019, Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics, J Eur Ceram Soc, 39, 4778, 10.1016/j.jeurceramsoc.2019.07.003
Ma, 2019, Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics, J Mater Chem C, 7, 281, 10.1039/C8TC04447C
Wu, 2019, Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications, J Mater Chem C, 7, 6222, 10.1039/C9TC01239G
Tunkasiri, 1996, Dielectric strength of fine grained barium titanate ceramics, J Mater Sci Lett, 15, 1767, 10.1007/BF00275336
Wang, 2014, Energy-storage properties of (1–x)Bi0.47Na0.47Ba0.06TiO3–xKNbO3 lead-free ceramics, J Alloy Compd, 585, 14, 10.1016/j.jallcom.2013.09.052
Xu, 2015, A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution, J Mater Sci: Mater Electron, 27, 322
Xu, 2017, Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method, J Eur Ceram Soc, 37, 99, 10.1016/j.jeurceramsoc.2016.07.011
Shi, 2018, High energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-SrTi0.875Nb0.1O3 lead-free relaxor ferroelectrics, J Mater Sci Technol, 34, 2371, 10.1016/j.jmst.2018.06.008
Li, 2019, Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Ceram Int, 45, 19822, 10.1016/j.ceramint.2019.06.237
Zhao, 2015, Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 lead-free ceramics, J Mater Sci: Mater Electron, 27, 466
Yu, 2017, Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics, Ceram Int, 43, 7653, 10.1016/j.ceramint.2017.03.062
Li, 2016, Ergodic Relaxor State with High Energy Storage Performance Induced by Doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 Ceramics, J Electron Mater, 45, 5146, 10.1007/s11664-016-4731-y
Tang, 2016, High energy density dielectrics in lead-free Bi0.5Na0.5TiO3–NaNbO3–Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature, J Mater Sci: Mater Electron, 27, 6526
Hu, 2018, Enhanced energy-storage performance and dielectric temperature stability of (1–x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics, Ceram Int, 44, 10968, 10.1016/j.ceramint.2018.03.176
Zhang, 2018, Enhanced energy-storage properties of (1–x)Na0.5Bi0.5TiO3-xBaSnO3 ceramics, Ceram Int, 44, S207, 10.1016/j.ceramint.2018.08.113
Ren, 2018, Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1□0.1TiO3 based ceramics, J Alloy Compd, 742, 683, 10.1016/j.jallcom.2018.01.254
Zhao, 2018, Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics, J Am Ceram Soc, 101, 5578, 10.1111/jace.15870
Zhang, 2018, Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics, J Eur Ceram Soc, 38, 2304, 10.1016/j.jeurceramsoc.2017.11.053
Zhang, 2019, Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics, J Alloy Compd, 775, 342, 10.1016/j.jallcom.2018.10.025
Pan, 2019, Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors, J Mater Chem C, 7, 4072, 10.1039/C9TC00087A
Zhang, 2020, Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications, Ceram Int, 46, 98, 10.1016/j.ceramint.2019.08.238
Zhang, 2020, Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability, Chem Eng J, 383, 10.1016/j.cej.2019.123154
Zhu, 2020, High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties, J Mater Chem A, 8, 683, 10.1039/C9TA10347C
Qiao, 2020, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics, Chem Eng J, 388, 10.1016/j.cej.2020.124158
Yan, 2020, Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy, Nano Energy, 75, 10.1016/j.nanoen.2020.105012
Zhang, 2021, Enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics, Chem Eng J, 406, 10.1016/j.cej.2020.126818
Wang, 2014, High energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1–x)ZrxTiO3 lead-free anti-ferroelectric ceramics, Ceram Int, 40, 4323, 10.1016/j.ceramint.2013.08.099
Butnoi, 2018, High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr, J Eur Ceram Soc, 38, 3822, 10.1016/j.jeurceramsoc.2018.04.024
Wang, 2019, A high-tolerance BNT-based ceramic with excellent energy storage properties and fatigue/frequency/thermal stability, Ceram Int, 45, 23233, 10.1016/j.ceramint.2019.08.019
Yang, 2019, High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics, J Eur Ceram Soc, 39, 3051, 10.1016/j.jeurceramsoc.2019.04.031
Kandula KR, Banerjee K, Raavi SSK, Asthana S. Enhanced Electrocaloric Effect and Energy Storage Density of Nd-Substituted 0.92NBT-0.08BT Lead Free Ceramic. Phys Status Solidi (a) 2018;215:1700915.
Chen, 2019, Effect of Dy2O3 content on the dielectric, ferroelectric, and energy storage properties of lead-free 0.5Na0.5Bi0.5TiO3–0.5SrTiO3 bulk ceramics, J Mater Sci: Mater Electron, 30, 13556
Yin, 2017, Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics, Ceram Int, 43, 13541, 10.1016/j.ceramint.2017.07.060
Zhang, 2019, Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics, J Eur Ceram Soc, 39, 3057, 10.1016/j.jeurceramsoc.2019.02.004
Zhao, 2016, High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex-ion, J Alloy Compd, 666, 209, 10.1016/j.jallcom.2016.01.103
Xie, 2019, The evolution of phase structure, dielectric, strain, and energy storage density of complex-ions (Sr1/3Nb2/3)4+ doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics, J Phys Chem Solids, 126, 287, 10.1016/j.jpcs.2018.11.030
Yan, 2020, Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics, Ceram Int, 46, 281, 10.1016/j.ceramint.2019.08.261
Lu, 2016, Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping, J Materiomics, 2, 87, 10.1016/j.jmat.2016.02.001
Cui, 2018, Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics, J Mater Sci, 53, 9830, 10.1007/s10853-018-2282-8
Shi, 2019, The ferroelectric, dielectric and energy storage properties of Pb-free 0.6Na0.5Bi0.5TiO3-0.4SrTiO3 bulk ceramics modified by Fe2O3, Mater Res Express, 6, 10.1088/2053-1591/ab25c7
Zheng, 2008, Piezoelectric and Ferroelectric Properties of (Bi0.94-xLaxNa0.94)0.5Ba0.06TiO3 Lead-Free Ceramics. Journal of Physics D, Applied Physics, 41
Li, 2018, Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2□0.1)TiO3 ergodic relaxor ceramics, Materials Research Letters, 6, 345, 10.1080/21663831.2018.1457095
Yang, 2018, Enhanced Energy-Storage Properties of Lanthanum-Doped Bi0.5Na0.5TiO3-Based Lead-Free Ceramics, Energy Technology, 6, 357, 10.1002/ente.201700504
Chen, 2019, Improved dielectric energy storage performance of Pb-free 0.5Na0.5Bi0.5TiO3-0.5SrTiO3 ceramics modified with CaO, J Adv Dielectr, 08, 1850042, 10.1142/S2010135X1850042X
Tong, 2019, Enhanced energy storage properties in Nb-modified Bi0.5Na0.5TiO3–SrTiO3 lead-free electroceramics, J Mater Sci: Mater Electron, 30, 5780
Patel, 2018, Enhanced energy storage performance of glass added 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ferroelectric ceramics, J Asian Ceram Soc, 3, 383, 10.1016/j.jascer.2015.07.004
Ding, 2014, Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method, Mater Lett, 114, 107, 10.1016/j.matlet.2013.09.103
Li, 2019, Structure-design strategy of 0–3 type (Bi0.32Sr0.42Na0.20)TiO3/MgO composite to boost energy storage density, efficiency and charge-discharge performance, J Eur Ceram Soc, 39, 2889, 10.1016/j.jeurceramsoc.2019.03.047
Pu, 2017, Improved energy storage properties of microwave sintered 0.475BNT-0.525BCTZ-xwt%MgO ceramics, Mater Lett, 189, 232, 10.1016/j.matlet.2016.12.020
Pu, 2018, Improved energy storage properties of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3 ceramics by microwave sintering, Ceram Int, 44, S242, 10.1016/j.ceramint.2018.08.105
Huang, 2015, Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering, J Eur Ceram Soc, 35, 1469, 10.1016/j.jeurceramsoc.2014.11.022
Ren, 2017, Energy storage density and tunable dielectric properties of BaTi0.85Sn0.15O3/MgO composite ceramics prepared by SPS, J Eur Ceram Soc, 37, 1501, 10.1016/j.jeurceramsoc.2016.12.016
Yao, 2018, Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3−0.06BaTiO3)−0.1NaNbO3 ceramics, Ceram Int, 44, 5961, 10.1016/j.ceramint.2017.12.174
Beauchamp EK. Effect of Microstructure on Pulse Electrical Strength of MgO. J Am Ceram Soc 1971;54:484–7.
Wang, 2014, Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives, Ceram Int, 40, 14127, 10.1016/j.ceramint.2014.05.147
Yang, 2017, A lead free relaxation and high energy storage efficiency ceramics for energy storage applications, J Alloy Compd, 710, 436, 10.1016/j.jallcom.2017.03.261
Tong, 2020, Energy-storage properties of low-temperature Co-fired BNT-ST/AgPd multilayer lead-free ceramic capacitors, J Alloy Compd, 827, 10.1016/j.jallcom.2020.154260
Chen, 2009, Charge-discharge properties of lead zirconate stannate titanate ceramics, J Appl Phys, 034105
Li, 2017, Temperature induced high charge–discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics, Scr Mater, 141, 15, 10.1016/j.scriptamat.2017.07.010
Bai, 2019, Tailoring frequency-insensitive large field-induced strain and energy storage properties in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-modified (Bi0.5Na0.5)TiO3 lead-free ceramics, Dalton Trans, 48, 10160, 10.1039/C9DT01738K
Yang, 2020, Toward Multifunctional Electronics: Flexible NBT-Based Film with a Large Electrocaloric Effect and High Energy Storage Property, ACS Appl Mater Interfaces, 12, 6082, 10.1021/acsami.9b21105
Scott, 2011, Electrocaloric Materials, Annu Rev Mater Res, 41, 229, 10.1146/annurev-matsci-062910-100341
Kumar, 2019, Enhanced Electrocaloric Effect and Energy Storage Density in Lead-Free 0.8Na0.5Bi0.5TiO3-0.2SrTiO3 Ceramics, Phys Status Solidi A, 1800786, 1
Mischenko, 2006, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3, Science, 311, 1270, 10.1126/science.1123811
Neese, 2008, Large Electrocaloric Effect in Ferroelectric Polymers near Room Temperature, Science, 321, 821, 10.1126/science.1159655
Ma, 2017, Highly Efficient Electrocaloric Cooling with Electrostatic Actuation, Science, 357, 1130, 10.1126/science.aan5980
Luo, 2012, Orientation and Phase Transition Dependence of the Electrocaloric Effect in 0.71PbMg1/3Nb2/3O3-0.29PbTiO3 Single Crystal, Appl Phys Lett, 101, 10.1063/1.4745185
Peng, 2013, A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature, Adv Funct Mater, 23, 2987, 10.1002/adfm.201202525
Peng, 2019, Phase-Transition Induced Giant Negative Electrocaloric Effect in a Lead-Free Relaxor Ferroelectric Thin Film, Energy Environ Sci, 12, 1708, 10.1039/C9EE00269C
Zhao, 2019, Large Electrocaloric Effect over a Wide Temperature Range in BaTiO3-Modified Lead-Free Ceramics, J Mater Chem C, 7, 1353, 10.1039/C8TC06110F
Zhuo, 2018, Giant Negative Electrocaloric Effect in (Pb, La)(Zr, Sn, Ti)O3 Antiferroelectrics near Room Temperature, ACS Appl Mater Interfaces, 10, 11747, 10.1021/acsami.8b00744
Moya, 2013, Giant Electrocaloric Strength in Single-Crystal BaTiO3, Adv Mater, 25, 1360, 10.1002/adma.201203823
Yang, 2013, Optimized electrocaloric refrigeration capacity in lead-free (1–x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 ceramics, Appl Phys Lett, 102
Le Goupil, 2019, Direct measurement of electrocaloric effect in lead-free (Na0.5Bi0.5)TiO3-based multilayer ceramic capacitors, J Eur Ceram Soc, 39, 3315, 10.1016/j.jeurceramsoc.2019.04.032
Rožič, 2011, Influence of the critical point on the electrocaloric response of relaxor ferroelectrics, J Appl Phys, 110, 10.1063/1.3641975
Peräntie, 2013, Electrocaloric properties in relaxor ferroelectric (1–x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 system, J Appl Phys, 114, 1, 10.1063/1.4829012
Khassaf, 2016, Perovskite ferroelectrics and relaxor-ferroelectric solid solutions with large intrinsic electrocaloric response over broad temperature ranges, J Mater Chem C, 4, 4763, 10.1039/C6TC01107A
Kim, 2019, Direct and indirect measurements of the electro-caloric effect in (Bi, Na)TiO3-SrTiO3 ceramics, J Appl Phys, 126, 10.1063/1.5117773
Chauhan, 2015, Enhanced Electrocaloric Effect in Pre-stressed Ferroelectric Materials, Energy Technology, 3, 177, 10.1002/ente.201402185
Cao, 2014, Enhanced electrocaloric effect in lead-free NBT-based ceramics, Ceram Int, 40, 9273, 10.1016/j.ceramint.2014.01.149
Zheng, 2016, Structural and electrocaloric properties of multiferroic-BiFeO3 doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 solid solutions, J Alloy Compd, 663, 249, 10.1016/j.jallcom.2015.12.056
Le Goupil, 2016, Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics, Sci Rep, 6, 28251, 10.1038/srep28251
Li, 2016, Large electrocaloric effect in (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics by La2O3 addition, Mater Res Bull, 74, 57, 10.1016/j.materresbull.2015.10.010
Zannen, 2017, Electrocaloric effect and energy storage in lead free Gd0.02Na0.5Bi0.48TiO3 ceramic, Solid State Sci, 66, 31, 10.1016/j.solidstatesciences.2017.02.007
Turki, 2019, Enhancement of dielectric, piezoelectric, ferroelectric, and electrocaloric properties in slightly doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramic by samarium. Journal of Appllied, Physics, 125
Kandula, 2019, Nd3+ and Nb5+ co‐substitutioninducing a large electrocaloric response in Na0.5Bi0.5TiO3 lead‐free ceramics, Phys Status Solidi (b), 256, 1900001, 10.1002/pssb.201900001
Zheng, 2011, Electro-caloric behaviors of lead-free Bi0.5Na0.5TiO3-BaTiO3 ceramics, J Electroceram, 28, 20, 10.1007/s10832-011-9673-4
Bai, 2011, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature, Mater Res Bull, 46, 1866, 10.1016/j.materresbull.2011.07.038
Zannen, 2015, Electrocaloric effect and luminescence properties of lanthanide doped (Na1/2Bi1/2)TiO3 lead free materials, Appl Phys Lett, 107, 10.1063/1.4927280
Le Goupil, 2015, Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics, Appl Phys Lett, 107, 10.1063/1.4934759
Le Goupil, 2016, Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics, APL Mater, 4, 10.1063/1.4950790
Wei, 2019, Large electrocaloric effect near room temperature in lead–free Bi0.5Na0.5TiO3-based ergodic relaxor observed by differential scanning calorimetry, Scr Mater, 171, 10, 10.1016/j.scriptamat.2019.06.012
Li, 2017, Type–I pseudo–first–order phase transition induced electrocaloric effect in lead–free Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics, Appl Phys Lett, 110, 10.1063/1.4983029
Birks, 2017, Direct and indirect determination of electrocaloric effect in Na0.5Bi0.5TiO3, J Appl Phys, 121, 10.1063/1.4985067
Dunce, 2015, Interpretation of the Electrocaloric Effect in Na1/2Bi1/2TiO3-SrTiO3-PbTiO3 Solid Solutions, Ferroelectrics, 485, 143, 10.1080/00150193.2015.1061405
Tang, 2015, Influence of the composition-induced structure evolution on the electrocaloric effect in Bi0.5Na0.5TiO3-based solid solution, Ceram Int, 41, 5888, 10.1016/j.ceramint.2015.01.020
Li, 2017, Phase–composition and temperature dependence of electrocaloric effect in lead–free Bi0.5Na0.5TiO3–BaTiO3–(Sr0.7Bi0.2□0.1)TiO3 ceramics, J Eur Ceram Soc, 37, 4732, 10.1016/j.jeurceramsoc.2017.06.033
Zhang, 2020, Phase-transition induced optimization of electrostrain, electrocaloric refrigeration and energy storage of LiNbO3 doped BNT-BT ceramics, Ceram Int, 46, 1343, 10.1016/j.ceramint.2019.09.097
Li, 2020, Electrocaloric effect in BNT-based lead-free ceramics by local-structure and phase-boundary evolution, J Alloy Compd, 817, 10.1016/j.jallcom.2019.152794
Steele, 2001, Materials For Fuel-Cell Technologies, Nature, 414, 345, 10.1038/35104620
Wachsman, 2011, Lowering the Temperature of Solid Oxide Fuel Cells, Science, 334, 935, 10.1126/science.1204090
Mahato, 2015, Progress in material selection for solid oxide fuel cell technology: A review, Prog Mater Sci, 72, 141, 10.1016/j.pmatsci.2015.01.001
Bhattacharyya, 2018, Electrical conductivity study of B-site Ga doped non-stoichiometric sodium bismuth titanate ceramics, J Alloy Compd, 746, 54, 10.1016/j.jallcom.2018.02.213
Yang, 2018, Electrical conductivity and conduction mechanisms in (Na0.5Bi0.5TiO3)1–x(BiScO3)x (0.00 ≤ x ≤ 0.25) solid solutions, J Mater Chem C, 6, 11598, 10.1039/C8TC04679D
Yang, 2018, Defect chemistry and electrical properties of sodium bismuth titanate perovskite, J Mater Chem A, 6, 5243, 10.1039/C7TA09245H
Bhattacharyya, 2018, Influence of excess sodium addition on the structural characteristics and electrical conductivity of Na0.5Bi0.5TiO3, Solid State Ionics, 317, 115, 10.1016/j.ssi.2018.01.016
Wang, 2018, Influence of A-site off-stoichiomety on grain conductivity and oxygen relaxation behavior of Na0.5Bi0.5TiO3 ceramics, Solid State Ionics, 327, 117, 10.1016/j.ssi.2018.10.024
Zhang, 2018, Atomistic simulations of ion migration in sodium bismuth titanate (NBT) materials: towards superior oxide-ion conductors, J Mater Chem A, 6, 9116, 10.1039/C8TA02545B
Yang, 2016, High Ionic Conductivity with Low Degradation in A-Site Strontium-Doped Nonstoichiometric Sodium Bismuth Titanate Perovskite, Chem Mater, 28, 5269, 10.1021/acs.chemmater.6b02555
Yang, 2017, Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit?, J Mater Chem A, 5, 21658, 10.1039/C7TA07667C
Bhattacharyya, 2018, High ionic conductivity of Mg2+-doped non-stoichiometric sodium bismuth titanate, Acta Mater, 159, 8, 10.1016/j.actamat.2018.08.007
Huang, 2016, Intermediate-temperature conductivity of B-site doped Na0.5Bi0.5TiO3-based lead-free ferroelectric ceramics, Ceram Int, 42, 16798, 10.1016/j.ceramint.2016.07.170
Koch, 2017, Ionic conductivity of acceptor doped sodium bismuth titanate: influence of dopants, phase transitions and defect associates, J Mater Chem C, 5, 8958, 10.1039/C7TC03031B
Steiner, 2019, The effect of Fe-acceptor doping on the electrical properties of Na1/2Bi1/2TiO3 and 0.94(Na1/2Bi1/2)TiO3–0.06BaTiO3, J Am Ceram Soc, 102, 5295, 10.1111/jace.16401
Liu, 2016, Enhanced ionic conductivity of Ag addition in acceptor-doped Bi0.5Na0.5TiO3 ferroelectrics. RSC, Advances, 6, 30623
Wang, 2019, Investigation of Sr, Mg codoped Na0.5Bi0.5TiO3 oxide ion conductor prepared by spark plasma sintering, Ionics, 25, 4265, 10.1007/s11581-019-03009-1
Meyer, 2017, Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3, J Mater Chem A, 5, 4368, 10.1039/C6TA10566A
Li, 2016, Controlling mixed conductivity in Na1/2Bi1/2TiO3 using A-site non-stoichiometry and Nb-donor doping, J Mater Chem C, 4, 5779, 10.1039/C6TC01719C
Alencar, 2004, Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor, Appl Phys Lett, 84, 4753, 10.1063/1.1760882
Du, 2014, Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramic, Appl Phys Lett, 104, 10.1063/1.4871378
Han, 2019, Dielectric and photoluminescence properties of fine-grained BaTiO3 ceramics co-doped with amphoteric Sm and valence-variable Cr, RSC Adv, 9, 4469, 10.1039/C8RA09326A
Wu, 2015, Enhanced visible and mid-IR emissions in Er/Yb-codoped K0.5Na0.5NbO3 ferroelectric ceramics, Ceram Int, 41, 14041, 10.1016/j.ceramint.2015.07.018
Wu, 2015, Photoluminescence properties of Er/Pr-doped K0.5Na0.5NbO3 ferroelectric ceramics, J Am Ceram Soc, 98, 2139, 10.1111/jace.13605
Lin, 2019, Effects of compositional changes on up-conversion photoluminescence and electrical properties of lead-free Er-doped K0.5Na0.5NbO3-SrTiO3 transparent ceramics, J Alloy Compd, 784, 60, 10.1016/j.jallcom.2018.12.390
Chen, 2007, Strong Green and Red Upconversion Emission in Er3+-Doped Na1/2Bi1/2TiO3 Ceramics, J Am Ceram Soc, 90, 664, 10.1111/j.1551-2916.2006.01457.x
Sun, 2011, Strong red emission in Pr doped (Bi0.5Na0.5)TiO3 ferroelectric ceramics, J Appl Phys, 110, 10.1063/1.3606425
Tian, 2013, Remanent-polarization-induced enhancement of photoluminescence in Pr3+-doped lead-free ferroelectric (Bi0.5Na0.5)TiO3 ceramic, Appl Phys Lett, 102, 10.1063/1.4790290
Luo, 2013, Effects of Er doping site and concentration on piezoelectric, ferroelectric, and optical properties of ferroelectric Na0.5Bi0.5TiO3, J Appl Phys, 114, 10.1063/1.4823812
Liu, 2016, Enhanced piezoelectricity, bright up-conversion and down-conversion photoluminescence in Er3+ doped 0.94(BiNa)0.5TiO3–0.06BaTiO3 multifunctional ceramics, Mater Res Bull, 74, 62, 10.1016/j.materresbull.2015.10.008
Sun, 2017, Upconversion and downconversion luminescence properties of Er3+ doped NBT ceramics synthesized via hydrothermal method, Opt Mater, 69, 244, 10.1016/j.optmat.2017.04.048
Wei, 2014, Bright green emission in Ho doped Bi1/2Na1/2TiO3 ferroelectric ceramics, Mater Lett, 115, 129, 10.1016/j.matlet.2013.10.051
Xia, 2017, Enhanced piezoelectric performance and orange-red emission of Sm3+ doped (Na1/2Bi1/2)TiO3 based lead-free ceramics, Ceram Int, 43, 376, 10.1016/j.ceramint.2016.09.168
Ma, 2020, Enhanced photoluminescence and ferro/piezoelectric performance in piezo-luminescent materials with outstanding water resistance and thermal stability, Dalton Trans, 49, 5581, 10.1039/D0DT00577K
Ikegami, 1964, Raman Spectrum of BaTiO3, J Phys Soc Jpn, 19, 46, 10.1143/JPSJ.19.46
Luo, 2013, Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 thin films, Appl Phys Lett, 103, 10.1063/1.4821918
Wu, 2013, Upconversion fluorescence studies of sol–gel-derived Er-doped KNN, J Alloy Compd, 580, 88, 10.1016/j.jallcom.2013.05.096
Said, 2004, Raman spectroscopy study of the Na0.5Bi0.5TiO3-PbTiO3 system, Mater Lett, 58, 1405, 10.1016/j.matlet.2003.09.036
Lun, 2019, Luminescence and electrical properties of Eu-modified Bi0.5Na0.5TiO3 multifunctional ceramics, J Am Ceram Soc, 102, 5243, 10.1111/jace.16394
Sommerdijk, 1974, Two photon luminescence with ultraviolet excitation of trivalent praseodymium, J Lumin, 8, 341, 10.1016/0022-2313(74)90006-4
Piper, 1974, Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light, J Lumin, 8, 344, 10.1016/0022-2313(74)90007-6
Kymen, 2005, Photoluminescence Properties of Pr-Doped (Ca, Sr, Ba)TiO3, Chem Mater, 17, 3200, 10.1021/cm0403715
Ryu, 2008, Novel efficient phosphors on the base of Mg and Zn co-doped SrTiO3:Pr3+, Acta Mater, 56, 358, 10.1016/j.actamat.2007.09.041
Boutinaud, 2005, UV-to-red relaxation pathways in CaTiO3: Pr3+, J Lumin, 111, 69, 10.1016/j.jlumin.2004.06.006
Boutinaud, 2006, Luminescence properties of Pr3+ in titanates and vanadates: Towards a criterion to predict 3P0 emission quenching, Chem Phys Lett, 418, 185, 10.1016/j.cplett.2005.10.120
Mahlik, 2009, High pressure evolution of YVO4:Pr3+ luminescence, J Phys Cond Matter Instit Phys J, 21
Boutinaud, 2012, Luminescence properties of K1/2Bi1/2TiO3: Pr3+ and Na1/2Bi1/2TiO3: Pr3+, J Phys: Condens Matter, 24
Judd, 1962, Optical Intensities of Rare-Earth Ions, Phys Rev, 127, 750, 10.1103/PhysRev.127.750
Ofelt, 1962, Intensities of crystal spectra of rare-earth ions, J Chem Phys, 37, 511, 10.1063/1.1701366
Zhou, 2012, Improved Electrical Properties and Strong Red Emission of Pr3+-Doped xK0.5Bi0.5TiO3-(1–x)Na0.5Bi0.5TiO3 Lead-Free Ferroelectric Thin Films, J Am Ceram Soc, 95, 483, 10.1111/j.1551-2916.2011.05028.x
Du, 2013, Photoluminescence and piezoelectric properties of Pr-doped NBT–xBZT ceramics: Sensitive to structure transition, J Alloy Compd, 559, 92, 10.1016/j.jallcom.2013.01.096
Du, 2013, Electrical and luminescence properties of Er-doped Bi0.5Na0.5TiO3 ceramics, Mater Sci Eng, B, 178, 1219, 10.1016/j.mseb.2013.08.007
Hu, 2014, Photoluminescence and Temperature Dependent Electrical Properties of Er-Doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 Ceramics, J Am Ceram Soc, 97, 3877, 10.1111/jace.13217
Li, 2018, Tunable Luminescence Contrast in Photochromic Ceramics (1–x)Na0.5Bi0.5TiO3-xNa0.5K0.5NbO3: 0.002Er by an Electric Field Poling, ACS Appl Mater Interfaces, 10, 41525, 10.1021/acsami.8b15784
Li, 2018, The upconversion luminescence modulation and its enhancement in Er3+-doped Na0.5Bi0.5TiO3 based on photochromic reaction, J Am Ceram Soc, 101, 5640, 10.1111/jace.15879
Dunce, 2018, The role of disorder on Er3+ luminescence in Na1/2Bi1/2TiO3, J Alloy Compd, 762, 326, 10.1016/j.jallcom.2018.05.246
Kandula, 2018, Correlation between structural, ferroelectric and luminescence properties through compositional dependence of Nd3+ ion in lead free Na0.5Bi0.5TiO3, J Alloy Compd, 732, 233, 10.1016/j.jallcom.2017.10.186
Du, 2014, Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application, J Appl Phys, 116, 10.1063/1.4886575
Liu, 2015, Green and Red Up-Conversion Luminescence of Er3+/Yb3+ Co-Doped 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 Ceramics, Ferroelectrics, 488, 45, 10.1080/00150193.2015.1072018
Shi, 2018, Photoluminescence performance of Er/Yb co-doped NBT ceramics prepared via hydrothermal method, J Phys Chem Solids, 121, 228, 10.1016/j.jpcs.2018.05.031
Liu, 2016, Up-conversion luminescence and electric properties of Tm3+/Yb3+ co-doped (0.94Na0.5Bi0.5TiO3–0.06BaTiO3) ceramics, J Mater Sci: Mater Electron, 27, 7274
Wu, 2016, Tunable photoluminescence properties of Pr3+/Er3+-doped 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 low-temperature sintered multifunctional ceramics, Ceram Int, 42, 9899, 10.1016/j.ceramint.2016.03.089
Liu, 2016, Effect of the Yb3+ Concentration in Up-Conversion and Electrical Properties of Ho3+/Yb3+ Co-doped (0.94Na0.5Bi0.5TiO3-0.06BaTiO3) Ceramics, J Electron Mater, 45, 3473, 10.1007/s11664-016-4483-8
Kandula, 2017, Enhancement in electrical and optical properties by substitution of lanthanides (Nd3+ and Eu3+) in lead free Na0.5Bi0.5TiO3 ceramics, Ferroelectrics, 518, 23, 10.1080/00150193.2017.1360117
Huang, 2019, The color-tunable up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Tm3+ ceramics and its temperature sensing application based on the intrinsic defects, J Alloy Compd, 797, 659, 10.1016/j.jallcom.2019.05.168
Sun, 2019, Electric field-responsive photoluminescence color switching and reversible properties via Tb/Eu co-doped ergodic relaxor ferroelectrics, Phys Chem Chem Phys, 21, 7567, 10.1039/C9CP00324J