Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics

Progress in Materials Science - Tập 122 - Trang 100836 - 2021
Xuefan Zhou1, Guoliang Xue1, Hang Luo1, Chris R. Bowen2, Dou Zhang1
1State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
2Department of Mechanical Engineering, University of Bath, Bath BA2 2ET, United Kingdom

Tài liệu tham khảo

Jaffe, 1971 Benedek, 2013, Why are there so few perovskite ferroelectrics?, J Phys Chem C, 117, 13339, 10.1021/jp402046t Jaffe, 1965, Piezoelectric Transducer Materials, Proc IEEE, 53, 1372, 10.1109/PROC.1965.4253 Uchino, 1980, Electrostrictive effect in lead magnesium niobate single crystals, J Appl Phys, 51, 1142, 10.1063/1.327724 Dutta, 2011, Dynamic In Situ X-Ray Diffraction Study of Antiferroelectric-Ferroelectric Phase Transition in Strontium-Modified Lead Zirconate Titanate Ceramics, Integr Ferroelectr, 131, 153, 10.1080/10584587.2011.616441 Liu, 2020, Ultra-high energy density induced by diversified enhancement effects in (Pb0.98−xLa0.02Cax)(Zr0.7Sn0.3)0.995O3 antiferroelectric multilayer ceramic capacitors, Chem Eng J Smolensky, 1960, Fiz Tverd Tela, 2, 2982 Tu, 1994, Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bi1/2TiO3, Phys Rev B: Condens Matter, 49, 11550, 10.1103/PhysRevB.49.11550 Pronin, 1980, Peculiarities of phase transitions in sodium-bismuth titanate, Ferroelectrics, 25, 395, 10.1080/00150198008207029 Zvirgzds, 1982, X-ray study of phase-transitions in ferroelectric Na0.5Bi0.5TiO3, Ferroelectrics, 40, 75, 10.1080/00150198208210600 Isuyov, 1984, Temperature dependence of bireringence and opalescence of the sodium-bismuth titanate crystals, Ferroelectr Lett, 2, 205, 10.1080/07315178408202440 Vakhrushev, 1985, Phase transitions and soft modes in sodium bismuth titanate, Ferroelectrics, 63, 153, 10.1080/00150198508221396 Suchanicz, 1988, Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0.5Bi0.5TiO3, Ferroelectrics, 77, 107, 10.1080/00150198808223232 Suchanicz, 1995, X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3, Ferroelectrics, 165, 249, 10.1080/00150199508228304 Suchanicz, 1995, Investigations of the phase transitions in Na0.5Bi0.5TiO3, Ferroelectrics, 172, 455, 10.1080/00150199508018512 Jones, 2000, The tetragonal phase of Na0.5Bi0.5TiO3 ± a new variant of the perovskite structure, Acta Crystallogr A, 56, 426, 10.1107/S0108768100001166 Jones, 2002, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Crystallogr A, 58, 168, 10.1107/S0108768101020845 Dorcet, 2008, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition, Chem Mater, 20, 5061, 10.1021/cm8004634 Dorcet, 2008, A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3, Acta Mater, 56, 1753, 10.1016/j.actamat.2007.12.027 Dorcet, 2009, The structural origin of the antiferroelectric properties and relaxor behavior of Na0.5Bi0.5TiO3, J Magn Magn Mater, 321, 1758, 10.1016/j.jmmm.2009.02.013 Gorfman, 2010, Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3, J Appl Crystallogr, 43, 1409, 10.1107/S002188981003342X Aksel, 2011, Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3, Appl Phys Lett, 98, 10.1063/1.3573826 Beanland, 2011, Imaging planar tetragonal sheets in rhombohedral Na0.5Bi0.5TiO3 using transmission electron microscopy, Scr Mater, 65, 440, 10.1016/j.scriptamat.2011.05.031 Levin, 2012, Nano- and mesoscale structure of Na1/2Bi1/2TiO3: A TEM perspective, Adv Funct Mater, 22, 3445, 10.1002/adfm.201200282 Rao, 2013, Ferroelectric-ferroelectric phase coexistence in Na1/2Bi1/2TiO3, Phys Rev B, 87, 10.1103/PhysRevB.87.060102 Rao, 2013, Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3, Phys Rev B, 88, 10.1103/PhysRevB.88.224103 Choe, 2018, Monoclinic distortion, polarization rotation and piezoelectricity in the ferroelectric Na0.5Bi0.5TiO3, IUCrJ, 5, 417, 10.1107/S2052252518006784 Meyer, 2018, Phase transformations in the relaxor Na1/2Bi1/2TiO3 studied by means of density functional theory calculations, J Am Ceram Soc, 101, 472, 10.1111/jace.15207 Aksel, 2013, Local atomic structure deviation from average structure of Na0.5Bi0.5TiO3: Combined x-ray and neutron total scattering study, Phys Rev B, 87, 10.1103/PhysRevB.87.104113 Trolliard, 2008, Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: Second order orthorhombic to tetragonal phase transition, Chem Mater, 20, 5074, 10.1021/cm800464d Kreisel, 2003, High-pressure x-ray scattering of oxides with a nanoscale local structure: Application to Na1/2Bi1/2TiO3, Phys Rev B, 68, 366, 10.1103/PhysRevB.68.014113 Shuvaeva, 2005, Local structure of the lead-free relaxor ferroelectric (KxNa1-x)0.5Bi0.5TiO3, Phys Revb, 71, 10.1103/PhysRevB.71.174114 Keeble, 2012, Bifurcated Polarization Rotation in Bismuth-Based Piezoelectrics, Adv Funct Mater, 23, 185, 10.1002/adfm.201201564 Kreisel, 2004, Effect of high pressure on the relaxor ferroelectrics Na1/2Bi1/2TiO3 (NBT) and PbMg1/3Nb2/3O3 (PMN), Ferroelectrics, 302, 293, 10.1080/00150190490455269 Takenaka, 1991, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn J Appl Phys, 30, 2236, 10.1143/JJAP.30.2236 Sung, 2010, Kim MH and Park TG. notRoles of lattice distortion in (1–x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics, Appl Phys Lett, 96, 10.1063/1.3428580 Maurya, 2013, Origin of high piezoelectric response in A-site disordered morphotropic phase boundary composition of lead-free piezoelectric 0.93(Na0.5Bi0.5)TiO3–0.07BaTiO3, J Appl Phys, 113, 10.1063/1.4792729 Yoshii, 2006, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, Jpn J Appl Phys, 45, 4493, 10.1143/JJAP.45.4493 Lin, 2006, Piezoelectric and ferroelectric properties of [Bi0.5(Na1−x−yKxLiy)0.5]TiO3 lead-free piezoelectric ceramics, Appl Phys Lett, 88 Hiruma, 2009, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics, J Appl Phys, 105, 10.1063/1.3115409 Fu, 2010, Piezoelectric, ferroelectric and dielectric properties of Sm2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Mater Chem Phys, 124, 1065, 10.1016/j.matchemphys.2010.08.033 Zhang, 2008, Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, J Appl Phys, 103 Bhupaijit, 2015, Structural, microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics synthesized by the combustion technique, Ceram Int, 41, S81, 10.1016/j.ceramint.2015.03.226 Lin, 2008, Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics, Appl Phys A, 93, 549, 10.1007/s00339-008-4667-z Dai, 2010, Piezoelectric and Ferroelectric Properties of Li-Doped (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 Lead-Free Piezoelectric Ceramics, J Am Ceram Soc, 93, 1108, 10.1111/j.1551-2916.2009.03535.x Cheng, 2015, Microstructure and electrical properties of Bi1/2Na1/2TiO3–BaTiO3–Y2NiMnO6 lead-free piezoelectric ceramics, Ceram Int, 41, 6424, 10.1016/j.ceramint.2015.01.080 Cheng, 2015, Large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics, Ceram Int, 41, 8119, 10.1016/j.ceramint.2015.03.015 Cheng, 2015, Microstructure, electrical properties of Bi2NiMnO6-doped 0.935(Bi1/2Na1/2)TiO3–0.065BaTiO3 lead-free piezoelectric ceramics, J Alloy Compd, 632, 580, 10.1016/j.jallcom.2015.01.090 Tam, 2008, Fabrication of textured BNKLT ceramics by reactive templated grain growth using NBT templates, J Phys D Appl Phys, 41, 10.1088/0022-3727/41/4/045402 Zhao, 2009, Fabrication of Na0.5Bi0.5TiO3-BaTiO3-Textured Ceramics Templated by Plate-Like Na0.5Bi0.5TiO3 Particles, J Am Ceram Soc, 92, 1607, 10.1111/j.1551-2916.2009.03043.x Maurya, 2012, Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics, Appl Phys Lett, 100, 10.1063/1.4709404 Su, 2012, Fabrication and electrical properties of 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 textured ceramics by RTGG method using micrometer sized BaTiO3 plate-like templates, J Alloy Compd, 525, 133, 10.1016/j.jallcom.2012.02.090 Deng, 2014, Crystallographic textured evolution in BNT-BT-BKT ceramics prepared by reactive-templated grain growth method, J Mater Sci: Mater Electron, 25, 1873 Bai, 2018, Pairing high piezoelectric properties and enhanced thermal stability in grain-oriented BNT-based lead-free piezoceramics, Ceram Int, 44, 11402, 10.1016/j.ceramint.2018.03.193 Liu, 2009, Large Piezoelectric Effect in Pb-Free Ceramics, Phys Rev Lett, 103, 10.1103/PhysRevLett.103.257602 Yao, 2012, Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: The role of phase coexisting, EPL, 98, 27008, 10.1209/0295-5075/98/27008 Zhao, 2018, Practical High Piezoelectricity in Barium Titanate Ceramics Utilizing Multiphase Convergence with Broad Structural Flexibility, J Am Chem Soc, 140, 15252, 10.1021/jacs.8b07844 Saito, 2004, Lead-Free Piezoelectrics, Nature, 432, 84, 10.1038/nature03028 Zheng, 2017, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics, Energy Environ Sci, 10, 528, 10.1039/C6EE03597C Tao, 2019, Ultrahigh Performance in Lead-Free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence, J Am Chem Soc, 141, 13987, 10.1021/jacs.9b07188 Li, 2018, Ultrahigh Piezoelectric Properties in Textured (K, Na)NbO3-Based Lead-Free Ceramics, Adv Mater, 30, 1705171, 10.1002/adma.201705171 Xu, 2016, Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics, Adv Mater, 28, 8519, 10.1002/adma.201601859 Maurya, 2015, Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials, Sci Rep, 5, 8595, 10.1038/srep08595 Khatua, 2019, A coupled microstructural-structural mechanism governing thermal depolarization delay in Na0.5Bi0.5TiO3-based piezoelectrics, Acta Mater, 179, 49, 10.1016/j.actamat.2019.08.022 Zhang, 2015, Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nature, Communications, 6, 6615 Zhang, 2016, Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite, Dalton Trans, 45, 10891, 10.1039/C6DT01880G Yin, 2018, Thermal depolarization regulation by oxides selection in lead-free BNT/oxides piezoelectric composites, Acta Mater, 158, 269, 10.1016/j.actamat.2018.07.072 Zhang, 2019, Highly enhanced thermal stability in quenched Na0.5Bi0.5TiO3-based lead-free piezoceramics, J Eur Ceram Soc, 39, 4705, 10.1016/j.jeurceramsoc.2019.06.052 Yin, 2020, Advances in tuning the “d33∝1/Td” bottleneck: simultaneously realizing large d33 and high Td in Bi0.5Na0.5TiO3-based relaxor ferroelectrics, J Mater Chem A, 8, 9209, 10.1039/D0TA01559H Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system, Appl Phys Lett, 91 Hiruma, 2008, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics, Appl Phys Lett, 92, 10.1063/1.2955533 Teranishi, 2008, Giant strain in lead-free (Bi0.5Na0.5)TiO3-based single crystals, Appl Phys Lett, 92, 10.1063/1.2920767 Daniels, 2009, Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7%BaTiO3 piezoelectric ceramic, Appl Phys Lett, 95, 10.1063/1.3182679 Aksel, 2012, Structure and Properties of Fe-Modified Na0.5Bi0.5TiO3 at Ambient and Elevated Temperature, Phys Rev B, 85, 10.1103/PhysRevB.85.024121 Ma, 2010, Domain structure-dielectric property relationship in lead-free (1–x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics, J Appl Phys, 108, 10.1063/1.3514093 Schütz, 2012, Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate, Adv Funct Mater, 22, 2285, 10.1002/adfm.201102758 Jo, 2009, Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics, J Appl Phys, 105, 10.1063/1.3121203 Hinterstein, 2010, Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics, J Appl Crystallogr, 43, 1314, 10.1107/S0021889810038264 Kling, 2010, In situ transmission electron microscopy of electric field-triggered reversible domain formation in Bi-based lead-free piezoceramics, J Am Ceram Soc, 93, 2452, 10.1111/j.1551-2916.2010.03778.x Dittmer, 2012, Nanoscale Insight Into Lead-Free BNT-BT-xKNN, Adv Funct Mater, 22, 4208, 10.1002/adfm.201200592 Shi, 2018, Electric field–temperature phase diagrams for (Bi1/2Na1/2)TiO3–BaTiO3–(K1/2Na1/2)NbO3 relaxor ceramics, J Mater Chem C, 6, 12224, 10.1039/C8TC04189J Malik, 2014, High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics, Appl Phys Express, 7, 10.7567/APEX.7.061502 Dong, 2015, Composition-and Temperature-Dependent Large Strain in (1–x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)–xNaNbO3 Ceramics, J Am Ceram Soc, 98, 1150, 10.1111/jace.13407 Liu, 2016, Giant Strains in Non-Textured (Bi1/2Na1/2)TiO3-Based Lead-Free Ceramics, Adv Mater, 28, 574, 10.1002/adma.201503768 Liu, 2016, Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics, J Appl Phys, 120, 10.1063/1.4958853 Cheng, 2016, Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics, J Eur Ceram Soc, 36, 489, 10.1016/j.jeurceramsoc.2015.09.043 Li, 2017, Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics, Acta Mater, 128, 337, 10.1016/j.actamat.2017.02.037 Lei, 2017, Giant electromechanical strain response in lead-free SrTiO3-doped (Bi0.5Na0.5TiO3–BaTiO3)–LiNbO3 piezoelectric ceramics, J Am Ceram Soc, 100, 4670, 10.1111/jace.15009 Yin, 2018, Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics, Acta Mater, 147, 70, 10.1016/j.actamat.2018.01.054 Manotham, 2019, Excellent electric field-induced strain with high electrostrictive and energy storage performance properties observed in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-Ba(Nb0.01Ti0.99)O3-BiFeO3 ceramics, J Alloy Compd, 808, 10.1016/j.jallcom.2019.151655 Yin, 2019, Superior and anti-fatigue electro-strain in Bi0.5Na0.5TiO3-based polycrystalline relaxor ferroelectrics, J Mater Chem A, 7, 5391, 10.1039/C8TA11650D Zhu, 2016, Large piezoelectric effect of (Ba, Ca)TiO3-xBa(Sn, Ti)O3 lead-free ceramics, J Eur Ceram Soc, 36, 1017, 10.1016/j.jeurceramsoc.2015.11.039 Zhu, 2013, Enhanced Piezoelectric Properties of (Ba1-xCax)(Ti0.92Sn0.08)O3 Lead-Free Ceramics, J Am Ceram Soc, 96, 241, 10.1111/jace.12038 Zhu, 2013, Phase transition and high piezoelectricity in (Ba, Ca)(Ti1-xSnx)O3 lead-free ceramics, Appl Phys Lett, 103, 10.1063/1.4818732 Zhao, 2016, Site engineering and polarization characteristics in (Ba1-yCay)(Ti1-xHfx)O3 lead-free ceramics, J Appl Phys, 119, 10.1063/1.4939762 Lv, 2015, High unipolar strain in samarium-doped potassium–sodium niobate lead-free ceramics, RSC Adv, 5, 39295, 10.1039/C5RA02260F Zheng, 2015, Potassium-sodium niobate lead-free ceramics: modified strain as well as piezoelectricity, J Mater Chem A, 3, 1868, 10.1039/C4TA05423G Zheng, 2015, Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics, ACS Appl Mater Interfaces, 7, 20332, 10.1021/acsami.5b06033 Tao, 2016, Giant piezoelectric effect and high strain response in (1–x)(K0.45Na0.55)(Nb1−ySby)O3-xBi0.5Na0.5Zr1−zHfzO3 lead-free ceramics, J Eur Ceram Soc, 36, 1605, 10.1016/j.jeurceramsoc.2016.01.043 Ye, 2012, Large Strain Response in <001> Textured 0.79BNT-0.20BKT-0.01NKN Lead-Free Piezoelectric Ceramics, J Am Ceram Soc, 95, 3577, 10.1111/j.1551-2916.2012.05353.x Bai, 2017, NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in <00l> grain oriented lead-free BNT-based piezoelectric materials, J Eur Ceram Soc, 37, 2591, 10.1016/j.jeurceramsoc.2017.02.048 Si, 2020, Giant electro-strain in textured Li+-doped 0.852BNT-0.11BKT-0.038BT ternary lead-free piezoelectric ceramics, J Am Ceram Soc, 103, 1765, 10.1111/jace.16853 Acosta, 2015, Core-Shell Lead-Free Piezoelectric Ceramics: Current Status and Advanced Characterization of the Bi1/2Na1/2TiO3-SrTiO3 System, J Am Ceram Soc, 98, 3405, 10.1111/jace.13853 Koruza, 2016, Formation of the core–shell microstructure in lead-free Bi1/2Na1/2TiO3-SrTiO3 piezoceramics and its influence on the electromechanical properties, J Eur Ceram Soc, 36, 1009, 10.1016/j.jeurceramsoc.2015.11.046 Groh, 2014, Relaxor/ferroelectric composites: A solution in the quest for practically viable lead-free incipient piezoceramics, Adv Funct Mater, 24, 356, 10.1002/adfm.201302102 Wang, 2019, Phase-Field Study of Electromechanical Coupling in Lead-Free Relaxor/Ferroelectric-Layered Composites, Adv Electron Mater, 5, 1800710, 10.1002/aelm.201800710 Hao, 2016, Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M = Nb, Ta, Sb) lead-free piezoceramics, J Eur Ceram Soc, 36, 4003, 10.1016/j.jeurceramsoc.2016.06.020 Jin, 2019, Thermally stable electrostrains and composition-dependent electrostrictive coefficient Q33 in lead-free ferroelectric ceramics, Ceram Int, 45, 22854, 10.1016/j.ceramint.2019.07.328 Qi, 2020, Giant electrostrictive strain in (Bi0.5Na0.5)TiO3-NaNbO3 lead-free relaxor antiferroelectrics featuring temperature and frequency stability, J Mater Chem A, 8, 2369, 10.1039/C9TA12244C Shieh, 2007, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics, Acta Mater, 55, 3081, 10.1016/j.actamat.2007.01.012 Zhao, 2016, Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M = Sn, Hf, Zr) lead-free ceramics, Dalton Trans, 45, 6466, 10.1039/C5DT04891E Qi, 2019, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency, J Mater Chem A, 7, 3971, 10.1039/C8TA12232F Yang, 2020, Novel BaTiO3-Based, Ag/Pd-Compatible Lead-Free Relaxors with Superior Energy Storage Performance, ACS Appl Mater Interfaces, 12, 43942, 10.1021/acsami.0c13057 Yang, 2016, Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics, J Mater Chem A, 4, 13778, 10.1039/C6TA04107H Hao, 2013, A review on the dielectric materials for high energy-storage application, J Adv Dielectr, 03, 1330001, 10.1142/S2010135X13300016 Zhou, 2018, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability, J Mater Chem C, 6, 8528, 10.1039/C8TC03003K Hu, 2015, Xing Z and Wei X. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics, J Alloy Compd, 640, 416, 10.1016/j.jallcom.2015.02.225 Yuan, 2017, Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties, J Mater Chem C, 5, 9552, 10.1039/C7TC02478A Shao, 2017, Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials, J Mater Chem A, 5, 554, 10.1039/C6TA07803F Gao, 2019, Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties, J Mater Chem A, 7, 2225, 10.1039/C8TA09353A Zhao, 2017, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance, Adv Mater, 29, 1701824, 10.1002/adma.201701824 Yan, 2019, Silver niobate based lead-free ceramics with high energy storage density, J Mater Chem A, 7, 10702, 10.1039/C9TA00995G Qi, 2019, Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains, Adv Funct Mater, 29, 1903877, 10.1002/adfm.201903877 Tian, 2020, Large energy-storage density in transition-metal oxide modified NaNbO3–Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure, J Mater Chem A, 8, 8352, 10.1039/D0TA02285C Chen, 2020, Realizing stable relaxor antiferroelectric and superior energy-storage properties in (Na1-x/2Lax/2)(Nb1-xTix)O3 lead-free ceramics through A/B-site complex substitution, ACS Appl Mater Interfaces, 12, 32871, 10.1021/acsami.0c09876 Li, 2018, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency, Adv Mater, 30, 1802155, 10.1002/adma.201802155 Li, 2019, Constructing layered structures to enhance the breakdown strength and energy density of Na0.5Bi0.5TiO3-based lead-free dielectric ceramics, J Mater Chem C, 7, 15292, 10.1039/C9TC05637H Hu, 2020, Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics, J Mater Chem C, 8, 591, 10.1039/C9TC05528B Li, 2020, A novel lead-free Na0.5Bi0.5TiO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications, J Materiomics, 6, 743, 10.1016/j.jmat.2020.06.005 Yan F, Huang K, Jiang T, Zhou X, Shi Y, GE G, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater 2020;30:392–400. Li, 2020, Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications, Nat Mater, 19, 999, 10.1038/s41563-020-0704-x Gao, 2011, Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics, J Am Ceram Soc, 94, 4382, 10.1111/j.1551-2916.2011.04731.x Yang, 2019, Perovskite lead-free dielectrics for energy storage applications, Prog Mater Sci, 102, 72, 10.1016/j.pmatsci.2018.12.005 Ye, 2014, Enhanced energy-storage properties of SrTiO3 doped (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free antiferroelectric ceramics, J Mater Sci: Mater Electron, 25, 4632 Mishra, 2017, A complex lead-free (Na, Bi, Ba)(Ti, Fe)O3 single phase perovskite ceramic with a high energy-density and high discharge-efficiency for solid state capacitor applications, J Eur Ceram Soc, 37, 2379, 10.1016/j.jeurceramsoc.2017.01.036 Yin, 2018, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics, J Mater Chem A, 6, 9823, 10.1039/C8TA00474A Pu, 2018, High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 ceramics, ACS Sustainable Chem Eng, 6, 6102, 10.1021/acssuschemeng.7b04754 Pu, 2017, Enhanced energy storage density of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3 with MgO addition, J Alloy Compd, 702, 171, 10.1016/j.jallcom.2017.01.249 Tao, 2018, Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3:ZnO relaxor ferroelectric composites with high breakdown electric field and large energy storage properties, J Eur Ceram Soc, 38, 4946, 10.1016/j.jeurceramsoc.2018.07.006 Ma, 2019, Fine-grained BNT-based lead-free composite ceramics with high energy-storage density, Ceram Int, 45, 19895, 10.1016/j.ceramint.2019.06.245 Yan, 2018, Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure, J Mater Chem C, 6, 7905, 10.1039/C8TC02368A Yang, 2019, A novel lead-free ceramic with layered structure for high energy storage applications, J Alloy Compd, 773, 244, 10.1016/j.jallcom.2018.09.252 Jia, 2018, Superior temperature-stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3, J Am Ceram Soc, 101, 3468, 10.1111/jace.15519 Cao, 2016, Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems, Appl Phys Lett, 108, 10.1063/1.4950974 Qiao, 2019, Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficieny under a moderate electric field, J Mater Chem C, 7, 10514, 10.1039/C9TC03597D Li, 2019, Enhanced energy-storage performance of (1–x)(0.72Bi0.5Na0.5TiO3-0.28Bi0.2Sr0.7□0.1TiO3)-xLa ceramics, J Alloy Compd, 775, 116, 10.1016/j.jallcom.2018.10.092 Zhou, 2019, Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3-NaTaO3 relaxor ferroelectrics, ACS Appl Mater Interfaces, 11, 43107, 10.1021/acsami.9b13215 Zhou, 2019, Large energy density with excellent stability in fine-grained (Bi0.5Na0.5)TiO3-based lead-free ceramics, J Eur Ceram Soc, 39, 4053, 10.1016/j.jeurceramsoc.2019.05.056 Jiang, 2014, Electrocaloric effect based on the depolarization transition in (1–x)Bi0.5Na0.5TiO3–xKNbO3 lead-free ceramics, Ceram Int, 40, 2627, 10.1016/j.ceramint.2013.10.066 Cao, 2016, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics, J Eur Ceram Soc, 36, 593, 10.1016/j.jeurceramsoc.2015.10.019 Li, 2014, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3, Nat Mater, 13, 31, 10.1038/nmat3782 Li, 2015, Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3, Chem Mater, 27, 629, 10.1021/cm504475k Sun, 2017, Room-Temperature Large and Reversible Modulation of Photoluminescence by in Situ Electric Field in Ergodic Relaxor Ferroelectrics, ACS Appl Mater Interfaces, 9, 34042, 10.1021/acsami.7b09354 Kandula, 2018, Multifunctional Nd3+ substituted Na0.5Bi0.5TiO3 as lead-free ceramics with enhanced luminescence, ferroelectric and energy harvesting properties. RSC, Advances, 8, 15282 Shvartsman, 2012, Lead-Free Relaxor Ferroelectrics, J Am Ceram Soc, 95, 1, 10.1111/j.1551-2916.2011.04952.x Jo, 2012, Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective, J Electroceram, 29, 71, 10.1007/s10832-012-9742-3 Glaum, 2014, Electric Fatigue of Lead-Free Piezoelectric Materials, J Am Ceram Soc, 97, 665, 10.1111/jace.12811 Wu, 2015, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chem Rev, 115, 2559, 10.1021/cr5006809 Rödel, 2015, Transferring lead-free piezoelectric ceramics into application, J Eur Ceram Soc, 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013 Acosta, 2017, BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives, Appl Phys Rev, 4, 10.1063/1.4990046 Moriana, 2018, Lead-free textured piezoceramics using tape casting: A review, J Materiomics, 4, 277, 10.1016/j.jmat.2018.09.006 Liu, 2018, Antiferroelectrics for Energy Storage Applications: a Review, Adv Mater Technol, 1800111 Zheng, 2018, Recent development in lead-free perovskite piezoelectric bulk materials, Prog Mater Sci, 98, 552, 10.1016/j.pmatsci.2018.06.002 Hao, 2019, Progress in high-strain perovskite piezoelectric ceramics, Mater Sci Eng R, 135, 1, 10.1016/j.mser.2018.08.001 Wu, 2019, Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Lead-Free Materials, Adv Funct Mater, 29, 1902911, 10.1002/adfm.201902911 Feng, 2020, Defects and aliovalent doping engineering in electroceramics, Chem Rev, 120, 1710, 10.1021/acs.chemrev.9b00507 Lv, 2020, Zhang X-x and Wu J. Emerging new phase boundary in potassium sodium-niobate based ceramics, Chem Soc Rev, 49, 671, 10.1039/C9CS00432G Lv, 2020, Nano-domains in lead-free piezoceramics: a review, J Mater Chem A, 8, 10026, 10.1039/D0TA03201H Yang, 2020, Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications, J Mater Chem A, 8, 23724, 10.1039/D0TA08345C Wu, 2020, Perovskite lead-free piezoelectric ceramics, J Appl Phys, 127, 10.1063/5.0006261 Jaffe, 1954, Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics, J Appl Phys, 25, 809, 10.1063/1.1721741 Jaffe, 1955, Properties of Piezoelectric Ceramics in the Solid Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate, J Res Nat Bur Stand, 55, 239, 10.6028/jres.055.028 Uršič, 2011, Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN-PT) Material for Actuator Applications, Smart Materials Research, 452901 Cowley, 2011, Relaxing with relaxors: a review of relaxor ferroelectrics, Adv Phys, 60, 229, 10.1080/00018732.2011.555385 Goldschmidt, 1926, Die Gesetze der Krystallochemie, Naturwissenschaften, 14, 477, 10.1007/BF01507527 Beanl, 2014, Symmetry and defects in rhombohedral single-crystalline Na0.5Bi0.5TiO3, Phys Rev B, 89, 1 Geday, 2004, Birefringence imaging of phase transitions: application to Na0.5Bi0.5TiO3, J Appl Crystallogr, 33, 909, 10.1107/S0021889800002582 Petzelt, 2004, Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3, J Phys: Condens Matter, 16, 2719 Rao, 2016, Electric field and temperature dependence of the local structural disorder in the lead-free ferroelectric Na0.5Bi0.5TiO3: An EXAFS study, Phys Rev B, 93, 10.1103/PhysRevB.93.024106 Ba, 2006, Recent progress in relaxor ferroelectrics with perovskite structure, J Mater Sci, 41, 31, 10.1007/s10853-005-5915-7 Jo, 2011, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol%BaTiO3, J Appl Phys, 110, 10.1063/1.3645054 Hiruma, 2006, Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics, Jpn J Appl Phys, 45, 7409, 10.1143/JJAP.45.7409 Hiruma, 2008, Phase transition temperature and electrical properties of (Bi1/2Na1/2)TiO3–(Bi1/2A1/2)TiO3 (A=Li and K) lead-free ferroelectric ceramics, J Appl Phys, 103, 10.1063/1.2903498 Ranjan, 2005, Structure and dielectric properties of (Na0.50Bi0.50)1−xBaxTiO3: 0≤x≤0.10, Solid State Commun, 135, 394, 10.1016/j.ssc.2005.03.053 Wylie-van Eerd, 2010, Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy, Phys Rev B, 82, 10.1103/PhysRevB.82.104112 Ma, 2010, Phase diagram of unpoled lead-free (1–x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics, Solid State Commun, 150, 1497, 10.1016/j.ssc.2010.06.006 Ma, 2011, In situ Transmission Electron Microscopy Study on the Phase Transitionsin Lead-Free (1–x)(Bi1/2Na1/2)TiO3-xBaTiO3 Ceramics, J Am Ceram Soc, 94, 4040, 10.1111/j.1551-2916.2011.04670.x Jo, 2011, Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics, J Appl Phys, 109, 10.1063/1.3530737 Ma, 2012, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoelectrics, Phys Rev Lett, 109, 10.1103/PhysRevLett.109.107602 Ma, 2013, A New Phase Boundary in (Bi1/2Na1/2)TiO3−BaTiO3 Revealed via a Novel Method of Electron Diffraction Analysis, Adv Funct Mater, 23, 5261, 10.1002/adfm.201300640 Ut, 2012, Crystal structure of 0.96(Na0.5Bi0.5TiO3)–0.04(BaTiO3) from combined refinement of x-ray and neutron diffraction patterns, Appl Phys Lett, 101 Maurya, 2014, Effect of poling on nanodomains and nanoscale structure in A-site disordered lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3, J Mater Chem C, 2, 8423, 10.1039/C4TC01124D Gdl, 2019, Local-scale structural response of (1–x)Na0.5Bi0.5TiO3-xBaTiO3 to external electric fields, Appl Phys Lett, 114 Gomah-Pettry J-R, Saïd S, Marchet P, Mercurio J-P. Sodium-bismuth titanate based lead-free ferroelectric materials. J Eur Ceram Soc 2004;24:1165–9. Suchanicz, 2003, Structural and dielectric properties of (Na0.5Bi0.5)0.70Ba0.30TiO3 ceramics, J Eur Ceram Soc, 23, 1559, 10.1016/S0955-2219(02)00406-5 Suchanicz, 2003, Structural and electric characteristics of (Na0.5Bi0.5)0.50Ba0.50TiO3 and (Na0.5Bi0.5)0.20Ba0.80TiO3 ceramics, Mater Sci Eng, B, 97, 154, 10.1016/S0921-5107(02)00577-9 Datta, 2010, Anomalous phase transitions of lead-free piezoelectric xNa0.5Bi0.5TiO3-(1–x)BaTiO3 solid solutions with enhanced phase transition temperatures, Phys Rev B, 82, 10.1103/PhysRevB.82.224105 Pronin, 1982, Phase transitions in solid solutions of sodium-bismuth and potassium-bismuth titanates, Sov Phys Solid State, 24, 1060 Sasaki, 1999, Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Systems, Jpn J Appl Phys, 38, 5564, 10.1143/JJAP.38.5564 Hiruma, 2008, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions, J Appl Phys, 104, 10.1063/1.3043588 Levin, 2013, Local structure, pseudosymmetry, and phase transitions in Na1/2Bi1/2TiO3–K1/2Bi1/2TiO3 ceramics, Phys Rev B, 87, 10.1103/PhysRevB.87.024113 Adhikary, 2019, Long-period structural modulation on the global length scale as the characteristic feature of the morphotropic phase boundaries in the Na0.5Bi0.5TiO3 based lead-free piezoelectrics, Acta Mater, 164, 749, 10.1016/j.actamat.2018.11.016 Neagu, 2017, Local disorder in Na0.5Bi0.5TiO3-piezoceramic determined by 3D electron diffuse scattering, Sci Rep, 7, 12519, 10.1038/s41598-017-12801-w Neagu, 2018, The influence of potassium content on octahedral-tilt disorder in Na0.5Bi0.5TiO3-solid solutions near morphotropic phase boundary, Scrip Mater, 152, 49, 10.1016/j.scriptamat.2018.04.016 Ehara, 2015, Electric-field-temperature phase diagram of Mn-doped Bi0.5(Na0.9K0.1)0.5TiO3 ceramics, Appl Phys Lett, 107, 10.1063/1.4938759 Ehara, 2016, Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 ceramics, J Appl Phys, 120, 10.1063/1.4966614 Otonicar, 2017, External-field-induced crystal structure and domain texture in (1–x)Na0.5Bi0.5TiO3–xK0.5Bi0.5TiO3 piezoceramics, Acta Mater, 127, 319, 10.1016/j.actamat.2017.01.052 Babu, 2018, Coexistence of ferroelectric phases and electric field induced structural transformation in sodium potassium bismuth titanate ceramics, J Appl Phys, 123 Damjanovic, 2005, Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics, J Am Ceram Soc, 88, 2663, 10.1111/j.1551-2916.2005.00671.x Viola, 2013, Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics, J Adv Dielectr, 3, 1350007, 10.1142/S2010135X13500070 Fu, 2000, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature, 403, 281, 10.1038/35002022 Zhang, 2012, High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective, J Appl Phys, 111 Wada S. In Ye Z-G, editor. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials-Synthesis, Characterization and Applications. England: Woodhead Publishing; 2008, p. 266–303. Wada, 1999, Engineered domain configuration in rhombohedral PZN-PT single crystals and their ferroelectric related properties, Ferroelectrics, 221, 147, 10.1080/00150199908016449 Yako, 2005, Domain size dependence of d33 piezoelectric properties for barium titanate single crystals with engineered domain configurations, Mater Sci Eng, B, 120, 181, 10.1016/j.mseb.2005.02.031 Wada, 2006, Domain wall engineering in lead-free piezoelectric materials for enhanced piezoelectric properties, Ferroelectrics, 196, 109 Li, 2011, Critical property in relaxor-PbTiO3 single crystals – Shear piezoelectric response, Adv Funct Mater, 21, 2118, 10.1002/adfm.201002711 Li, 2016, The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals, Nat Commun, 7, 13807, 10.1038/ncomms13807 Viola, 2013, Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics, J Adv Dielectr, 03, 1350007, 10.1142/S2010135X13500070 Damjanovic, 2006, Piezoelectric anisotropy: enhanced piezoelectric response along nonpolar directions in perovskite crystals, J Mater Sci, 41, 65, 10.1007/s10853-005-5925-5 Davis M. Swiss Federal Institute of Technology; 2006. Islam, 2000, Ionic transport in ABO3 perovskite oxides: a computer modelling tour, J Mater Chem, 10, 1027, 10.1039/a908425h Chu, 2002, Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics, J Eur Ceram Soc, 22, 2115, 10.1016/S0955-2219(02)00027-4 Kim, 2007, Electrical properties of (1–x)(Bi0.5Na0.5)TiO3–xBaTiO3 synthesized by emulsion method, Ceram Int, 33, 447, 10.1016/j.ceramint.2005.10.022 Xu, 2008, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics, Solid State Sci, 10, 934, 10.1016/j.solidstatesciences.2007.11.003 Parija, 2012, Ferroelectric and piezoelectric properties of (1–x)(Bi0.5Na0.5)TiO3–xBaTiO3 ceramics, J Mater Sci: Mater Electron, 24, 402 Xu, 2014, Improved ferroelectricity of (1–x)Na0.5Bi0.5TiO3–xBaTiO3 ceramics rapidly sintered at low temperature, Ceram Int, 40, 11819, 10.1016/j.ceramint.2014.04.014 Anthoniappen, 2014, Enhanced piezoelectric and dielectric responses in 92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3 ceramics, J Am Ceram Soc, 97, 1890, 10.1111/jace.12864 Lidjici, 2015, Raman and electrical studies on the (1–x)(Na0.5Bi0.5)TiO3−xBaTiO3 lead free ceramics, J Alloy Compd, 618, 643, 10.1016/j.jallcom.2014.08.161 Zhou, 2016, Enhanced piezoresponse and electric field induced relaxor-ferroelectric phase transition in NBT-0.06BT ceramic prepared from hydrothermally synthesized nanoparticles, Ceram Int, 42, 18631, 10.1016/j.ceramint.2016.08.208 Zeng, 2014, Origin of high piezoelectric activity in perovskite ferroelectric ceramics, Appl Phys Lett, 104, 10.1063/1.4884640 Yang, 2011, Dielectric, ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3–(Ba0.7Ca0.3)TiO3 ceramics at morphotropic phase boundary composition, Mater Sci Eng, B, 176, 260, 10.1016/j.mseb.2010.12.007 Jan, 2014, Electrical Properties of Ca-modified Na0.5Bi0.5TiO3–BaTiO3 ceramics, Ceram Int, 40, 15439, 10.1016/j.ceramint.2014.06.107 Lee, 2009, Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics, J Eur Ceram Soc, 29, 1443, 10.1016/j.jeurceramsoc.2008.08.028 Xu, 2016, High piezoelectric response in (Li0.5Sm0.5)2+-modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 near the nonergodic–ergodic relaxor transition, J Electron Mater, 45, 2967, 10.1007/s11664-016-4347-2 Peng, 2005, Preparation and properties of (Bi1/2Na1/2)TiO3–Ba(Ti, Zr)O3 lead-free piezoelectric ceramics, Mater Lett, 59, 1576, 10.1016/j.matlet.2005.01.026 Glaum, 2013, Tailoring the Piezoelectric and Relaxor Properties of (Bi1/2Na1/2)TiO3-BaTiO3 via Zirconium Doping, J Am Ceram Soc, 96, 2881, 10.1111/jace.12405 Tian, 2007, Diffusion phase transition and dielectric characteristics of Bi0.5Na0.5TiO3–Ba(Hf, Ti)O3 lead-free ceramics, Solid State Commun, 142, 10, 10.1016/j.ssc.2007.01.043 Han, 2018, Shrinkage mechanism and enhanced piezoelectric properties of Ta doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 lead free ceramics, Ceram Int, 44, 5352, 10.1016/j.ceramint.2017.12.155 Yoon, 2008, Effects of co-doped CaO/MnO on the piezoelectric/dielectric properties and phase transition of lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoelectric ceramics, J Electroceram, 23, 564, 10.1007/s10832-008-9548-5 Wu, 2012, Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3-modified Bi0.51Na0.50TiO3 lead-free ceramics, Ceram Int, 38, 5677, 10.1016/j.ceramint.2012.04.011 Li, 2003, Electrical Properties of La3+-Doped (Na0.5Bi0.5)0.94Ba0.06TiO3 Ceramics, Jpn J Appl Phys, 42, 7387, 10.1143/JJAP.42.7387 Zhou, 2009, Dielectric and piezoelectric properties of Y2O3 doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics, Mater Res Bull, 44, 724, 10.1016/j.materresbull.2008.09.046 Fu, 2010, Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Mater Sci Eng, B, 167, 161, 10.1016/j.mseb.2010.01.057 Zhi-hui, 2011, Piezoelectric and dielectric properties of Dy2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, J Alloy Compd, 509, 482, 10.1016/j.jallcom.2010.09.070 Zhou, 2015, Improved piezoelectric and bright up-conversion photoluminescent properties in Ho-doped Bi0.5Na0.5TiO3–BaTiO3 lead-free ceramics, J Mater Sci: Mater Electron, 26, 6979 Hammer M. Ph.D. Thesis, University of Karlsruhe; 1996. Zhou, 2005, Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics, Mater Lett, 59, 1649, 10.1016/j.matlet.2005.01.034 Hu, 2008, Piezoelectric and Dielectric Properties of Bi2O3-Doped (Bi0.5Na0.5)0.94Ba0.06TiO3 Lead-Free Piezoelectric Ceramics, Key Eng Mater, 368–372, 1915, 10.4028/www.scientific.net/KEM.368-372.1915 Xu, 2009, Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3–BaTiO3 composition near the morphotropic phase boundary, J Alloy Compd, 471, 310, 10.1016/j.jallcom.2008.03.078 Parija, 2015, Morphotropic Phase boundary in BNT-BZT solid solution: A study by Raman spectroscopy and electromechanical parameters, Journal of Ceramic Processing Research, 16, 565 Zhang, 2018, Mn doping effects on electric properties of 0.93(Bi0.5Na0.5)TiO3-0.07Ba(Ti0.945Zr0.055)O3 ceramics, J Am Ceram Soc, 101, 2996, 10.1111/jace.15457 Dinh, 2015, Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82K0.18)1/2TiO3 ceramics, Ceram Int, 41, S458, 10.1016/j.ceramint.2015.03.150 Zhang, 2008, Enhancing Electrical Properties in NBT-KBT Lead-Free Piezoelectric Ceramics by Optimizing Sintering Temperature, J Am Ceram Soc, 91, 2716, 10.1111/j.1551-2916.2008.02469.x Yang, 2008, Structure and electrical properties of (1–x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary, Mater Res Bull, 43, 81, 10.1016/j.materresbull.2007.02.016 Moosavi, 2014, High-field electromechanical response of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 across its morphotropic phase boundary, J Phys D Appl Phys, 47, 10.1088/0022-3727/47/5/055304 Lee, 2018, Enhanced piezoelectric properties of (Bi, Na)TiO3-(Bi, K)TiO3 ceramics prepared by two-step sintering process, Int J Appl Ceram Technol, 15, 531, 10.1111/ijac.12798 Hernandez-Cuevas, 2019, Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic, J Adv Ceram, 8, 278, 10.1007/s40145-019-0314-8 Liao, 2007, Synthesis and properties of Bi0.5(Na1−x−yKxAgy)0.5TiO3 lead-free piezoelectric ceramics, Ceram Int, 33, 1445, 10.1016/j.ceramint.2006.05.004 Li, 2007, Piezoelectric and dielectric properties of CeO2-doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics, Ceram Int, 33, 95, 10.1016/j.ceramint.2005.08.001 Pan, 2011, Microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics, Curr Appl Phys, 11, 888, 10.1016/j.cap.2010.12.013 Zhi-Hui, 2011, Piezoelectric and Dielectric Properties of Dy2O3-Doped Bi0.5(Na0.82K0.18)0.5TiO3 Lead-Free Ceramics, Ferroelectrics, 425, 63, 10.1080/00150193.2011.634752 Fu, 2012, Structure and electrical properties of the Ho2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics, J Mater Sci: Mater Electron, 23, 2167 Fu, 2012, Structure and electrical properties of Er2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics, Mater Des, 40, 373, 10.1016/j.matdes.2012.04.020 Yu, 2008, Dielectric, ferroelectric, and piezoelectric properties of the lead-free (1−x)(Na0.5Bi0.5)TiO3-xBiAlO3 solid solution, Appl Phys Lett, 93, 112902, 10.1063/1.2967335 Jiao, 2013, Morphotropic phase boundary and electric properties in (1–x)Bi0.5Na0.5TiO3–xBaSnO3 lead-free piezoelectric ceramics, J Mater Sci: Mater Electron, 24, 4080 Rahman, 2014, Dielectric, ferroelectric and field-induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3 ceramics, Curr Appl Phys, 14, 331, 10.1016/j.cap.2013.12.009 Hiruma, 2009, Detection of morphotropic phase boundary of (Bi1/2Na1/2)TiO3-Ba(Al1/2Sb1/2)O3 solid-solution ceramics, Appl Phys Lett, 95, 10.1063/1.3194146 Wang, 2009, Morphotropic phase boundary in (1–x)Bi0.5Na0.5TiO3-x(Bi0.8La0.2)FeO3 with improved depolarization temperature, Phys Status Solidi (RRL) - Rapid Res Lett, 3, 245, 10.1002/pssr.200903189 Bai, 2015, Structure and electromechanical properties in Bi0.5Na0.5TiO3-based lead-free piezoceramics with calculated end-member Bi(Ni0.5Ti0.5)O3, J Eur Ceram Soc, 35, 3457, 10.1016/j.jeurceramsoc.2015.05.001 Hiruma, 2009, Formation of Morphotropic Phase Boundary and Electrical Properties of (Bi1/2Na1/2)TiO3–Ba(Al1/2Nb1/2)O3 Solid Solution Ceramics, Jpn J Appl Phys, 48, 09KC08, 10.1143/JJAP.48.09KC08 Weyland, 2016, Criticality: Concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics, Adv Funct Mater, 26, 7326, 10.1002/adfm.201602368 Zhou, 2007, Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of Bi1/2Na1/2TiO3−Bi(Mg2/3Nb1/3)O3, J Mater Sci, 43, 1016, 10.1007/s10853-007-2246-x Lin, 2008, Piezoelectric and dielectric properties of Bi0.5Na0.5TiO3–Bi0.5Li0.5TiO3 lead-free ceramics, J Mater Sci: Mater Electron, 20, 393 Chen, 2012, Effect of Li0.12Na0.88NbO3 content on the electrical properties of Bi0.50Na0.50TiO3 lead-free piezoelectric ceramics, J Alloy Compd, 520, 7, 10.1016/j.jallcom.2012.01.014 Bai, 2013, The Composition and Temperature-Dependent Structure Evolution and Large Strain Response in (1–x)(Bi0.5Na0.5)TiO3−xBa(Al0.5Ta0.5)O3 Ceramics, J Am Ceram Soc, 96, 246, 10.1111/jace.12039 Wang, 2013, Preparation and Electric Properties of Bi0.5Na0.5TiO3-Bi(Al0.5Ga0.5)O3 Lead-Free Piezoceramics, J Am Ceram Soc, 96, 3793, 10.1111/jace.12588 Li, 2015, Phase-Composition-Dependent Piezoelectric and Electromechanical Strain Properties in (Bi1/2Na1/2)TiO3-Ba(Ni1/2Nb1/2)O3 Lead-Free Ceramics, J Am Ceram Soc, 98, 811, 10.1111/jace.13363 Ullah, 2015, Relaxor behavior and piezoelectric properties of Bi(Mg0.5Ti0.5)O3-modified Bi0.5Na0.5TiO3 lead-free ceramics, Ceram Int, 41, 10557, 10.1016/j.ceramint.2015.04.150 Lin, 2008, Structure and electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics, Solid State Ionics, 178, 1930 Cheng, 2015, Microstructure and enhanced electrical properties of lead-free Bi1/2Na1/2TiO3–BaTiO3–La2CoMnO6 ternary system ceramics, Ceram Int, 41, 14124, 10.1016/j.ceramint.2015.07.033 Cheng, 2016, Giant piezoelectricity and ultrahigh strain response in bismuth sodium titanate lead-free ceramics, Mater Lett, 165, 143, 10.1016/j.matlet.2015.11.131 Wang, 2007, Ferroelectric properties of lithia-doped (Bi0.95Na0.75K0.20)0.5Ba0.05TiO3 ceramics, Mater Lett, 61, 3847, 10.1016/j.matlet.2006.12.045 Fan, 2007, Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–KNbO3 lead-free piezoelectric ceramics, Appl Phys Lett, 91, 10.1063/1.2815918 Zhou, 2008, Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoelectric ceramics, Mater Sci Eng, B, 153, 31, 10.1016/j.mseb.2008.09.032 Hiruma, 2009, Depolarization temperature and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, Ceram Int, 35, 117, 10.1016/j.ceramint.2007.10.023 Zhou, 2009, Microstructure and electrical properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–LiNbO3 lead-free piezoelectric ceramics, J Phys Chem Solids, 70, 541, 10.1016/j.jpcs.2008.12.013 Wu, 2011, Microstructure, ferroelectric, and piezoelectric properties of (1–x−y)Bi0.5Na0.5TiO3–xBaTiO3–yBi0.5Ag0.5TiO3 lead-free ceramics, J Alloy Compd, 509, 466, 10.1016/j.jallcom.2010.09.062 Wu, 2012, Investigation of a new lead-free (0.89−x)(Bi0.5Na0.5)TiO3–0.11(Bi0.5K0.5)TiO3–xBa0.85Ca0.15Ti0.90Zr0.10O3 ceramics, Mater Res Bull, 47, 3937, 10.1016/j.materresbull.2012.07.039 Liu, 2017, An Investigation of Dielectric, Piezoelectric Properties and Microstructures of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 Lead-Free Piezoelectric Ceramics Doped with K2AlNbO5 Compound, J Electron Mater, 46, 5287, 10.1007/s11664-017-5545-2 Bell, 2001, Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes, J Appl Phys, 89, 3907, 10.1063/1.1352682 Liu, 2009, Complete set of material constants of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal with morphotropic phase boundary composition, J Appl Phys, 106 Yasuda, 2009, Electrical Properties of Lead-Free Relaxor Ferroelectric Solid Solution Single Crystal (Na1/2Bi1/2)TiO3-BaTiO3 Grown by Bridgman Method, Jpn J Appl Phys, 48, 09KC06, 10.1143/JJAP.48.09KC06 Lin D, Li Z, Zhang S, Xu Z, Yao X. Dielectric/piezoelectric properties and temperature dependence of domain structure evolution in lead free single crystal. Solid State Commun 2009;149:1646–9. Sun, 2013, Complete matrix properties of [001]c and [011]c poled 0.33Pb(In1/2Nb1/2)O3–0.38Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystals, J Alloy Compd, 553, 267, 10.1016/j.jallcom.2012.11.111 Zheng, 2013, Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions, Appl Phys Lett, 103, 10.1063/1.4821853 Huo, 2014, High Quality Lead-Free (Li, Ta) Modified (K, Na)NbO3 Single Crystal and its Complete Set of Elastic, Dielectric and Piezoelectric Coefficients with Macroscopic 4mm Symmetry, CrystEngComm, 16, 9828, 10.1039/C4CE01208A Huo, 2015, (K, Na, Li)(Nb, Ta)O3: Mn Lead-Free Single Crystal with High Piezoelectric Properties, J Am Ceram Soc, 98, 1829, 10.1111/jace.13540 Yang, 2015, Growth mechanism and enhanced electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric single crystals grown by a solid-state crystal growth method, J Eur Ceram Soc, 36, 541, 10.1016/j.jeurceramsoc.2015.11.002 Lee, 2016, Growth of (Na0.5Bi0.5)TiO3-SrTiO3 single crystals by solid state crystal growth, Ceram Int, 42, 18894, 10.1016/j.ceramint.2016.09.038 Sabolsky, 2001, Piezoelectric properties of <001> textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics, Appl Phys Lett, 78, 2551, 10.1063/1.1367291 Sabolsky, 2003, Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics, J Appl Phys, 93, 4072, 10.1063/1.1554488 Richter, 2008, Textured PMN–PT and PMN–PZT, J Am Ceram Soc, 91, 929, 10.1111/j.1551-2916.2007.02216.x Yan, 2011, Templated Grain Growth of <001>-Textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 Piezoelectric Ceramics for Magnetic Field Sensors, J Am Ceram Soc, 94, 1784, 10.1111/j.1551-2916.2010.04298.x Yan, 2014, Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3-PbTiO3 <001>C radially textured cylinders, Appl Phys Lett, 104, 10.1063/1.4861224 Chang, 2015, Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics, Appl Phys Lett, 107, 10.1063/1.4929688 Duran, 2016, High strain, <001>-textured Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 piezoelectric ceramics, Scr Mater, 113, 14, 10.1016/j.scriptamat.2015.10.005 Chang, 2017, Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics, Appl Phys Lett, 111, 232901, 10.1063/1.5006288 Berksoy-Yavuz, 2018, Electrical properties and impedance spectroscopy of crystallographically textured 0.675[Pb(Mg1/3Nb2/3)O3]-0.325[PbTiO3] ceramics, J Mater Sci: Mater Electron, 29, 13310 Chang, 2011, Enhanced Electromechanical Properties and Temperature Stability of Textured (K0.5Na0.5)NbO3-Based Piezoelectric Ceramics, J Am Ceram Soc, 94, 2494, 10.1111/j.1551-2916.2011.04393.x Sato, 2007, Preparation of <110>-Textured BaTiO3 Ceramics by the Reactive-Templated Grain Growth Method Using Needlelike TiO2 Particles, J Am Ceram Soc, 90, 3005, 10.1111/j.1551-2916.2007.01837.x Zhang, 2015, Evolution of textured microstructure of Li-doped (K, Na)NbO3 ceramics prepared by reactive templated grain growth, J Alloy Compd, 624, 158, 10.1016/j.jallcom.2014.11.071 Bai, 2016, Enhanced electromechanical properties in <00l>-textured (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics, Ceram Int, 42, 3429, 10.1016/j.ceramint.2015.10.139 Schultheiß, 2017, Effect of degree of crystallographic texture on ferroand piezoelectric properties of Ba0.85Ca0.15TiO3 piezoceramics, J Am Ceram Soc, 100, 2098, 10.1111/jace.14749 Liu, 2017, Exceptionally High Piezoelectric Coefficient and Low Strain Hysteresis in Grain-Oriented (Ba, Ca)(Ti, Zr)O3 through Integrating Crystallographic Texture and Domain Engineering, ACS Appl Mater Interfaces, 9, 29863, 10.1021/acsami.7b08160 Liu, 2018, Significantly Enhanced Energy-Harvesting Performance and Superior Fatigue-Resistant Behavior in [001]c-Textured BaTiO3-Based Lead-Free Piezoceramics, ACS Appl Mater Interfaces, 10, 31488, 10.1021/acsami.8b10361 Sun, 2019, Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites, J Mater Chem A, 7, 3603, 10.1039/C8TA10312G Yilmaz H, Trolier S, Mckinstry, Messing GL. (Reactive) Templated Grain Growth of Textured NBT-BT Ceramics—II Dielectric and Piezoelectric Properties. J Electroceram 2003;11:217–26. Yan, 2007, Fabrication and electrical properties of textured Na1/2Bi1/2TiO3-BaTiO3 ceramics by reactive-templated grain growth, J Electroceram, 21, 246, 10.1007/s10832-007-9140-4 Gao, 2008, Fabrication and dielectric properties of textured Na0.5Bi0.5TiO3-BaTiO3 ceramics by RTGG method, J Mater Sci: Mater Electron, 19, 1228 Zhao, 2008, Preparation and characterization of textured Bi0.5(Na0.8K0.2)0.5TiO3 ceramics by reactive templated grain growth, Mater Lett, 62, 1219, 10.1016/j.matlet.2007.08.016 Su, 2012, Densification and texture evolution of Bi4Ti3O12 templated Na0.5Bi0.5TiO3–BaTiO3 ceramics: Effects of excess Bi2O3, J Alloy Compd, 519, 25, 10.1016/j.jallcom.2011.11.061 Fancher, 2013, Poling effect on d33 in textured Bi0.5Na0.5TiO3-based materials, Scr Mater, 68, 443, 10.1016/j.scriptamat.2012.10.047 Chen, 2016, Effects of texture on microstructure, Raman vibration, and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics, J Eur Ceram Soc, 36, 1613, 10.1016/j.jeurceramsoc.2016.01.038 Jantunen, 2004, Tape casting of ferroelectric, dielectric, piezoelectric and ferromagnetic materials, J Eur Ceram Soc, 24, 1077, 10.1016/S0955-2219(03)00552-1 Messing, 2004, Templated Grain Growth of Textured Piezoelectric Ceramics, Crit Rev Solid State Mater Sci, 29, 45, 10.1080/10408430490490905 Zhang, 2019, Preparation and anisotropic properties of textured structural ceramics: A review, J Adv Ceram, 8, 289, 10.1007/s40145-019-0325-5 Liu, 2015, Progress on the fabrication of lead-free textured piezoelectric ceramics: perspectives over 25 years, J Mater Sci: Mater Electron, 26, 4425 Jiang, 2015, Synthesis and characterization of Na0.5Bi0.5TiO3 platelets with preferred orientation using Aurivillius precursors, Ceram Int, 41, 6858, 10.1016/j.ceramint.2015.01.135 Hussain, 2015, Plate-like Na0.5Bi0.5TiO3 particles synthesized by topochemical microcrystal conversion method, J Eur Ceram Soc, 35, 919, 10.1016/j.jeurceramsoc.2014.10.004 Zhang, 2015, Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics, J Eur Ceram Soc, 35, 2501, 10.1016/j.jeurceramsoc.2015.03.012 Negishi, 2012, Approaches for preparing<111>-textured Bi0.5Na0.5TiO3-based ceramics by hetero-templated grain growth, Ceram Int, 38, 5103, 10.1016/j.ceramint.2012.03.013 Cha, 2017, Mechanism of Bi0.5Na0.5TiO3 and Bi4.5Na0.5Ti4O15 template synthesis during topochemical microcrystal conversion and texturing of Bi0.5(Na0.8K0.2)0.5TiO3 piezoelectric ceramics, J Eur Ceram Soc, 37, 967, 10.1016/j.jeurceramsoc.2016.10.016 Maurya, 2013, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response, J Mater Chem C, 1, 2102, 10.1039/c3tc00619k Motohashi, 2007, Development of texture in Bi0.5Na0.5TiO3 prepared by reactive-templated grain growth process, J Eur Ceram Soc, 27, 3633, 10.1016/j.jeurceramsoc.2007.02.003 Liao, 2016, Origin of thermal depolarization in piezoelectric ceramics, Scr Mater, 115, 14, 10.1016/j.scriptamat.2015.12.030 Aksel E, Forrester JS, Kowalski B, Jones JL, Thomas2 PA. Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction. Appl Phys Lett 2011;99:222901. Jo, 2013, Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3, Appl Phys Lett, 102, 10.1063/1.4805360 Anton, 2011, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics, J Appl Phys, 110, 10.1063/1.3660253 Woodward, 2014, Investigation of the depolarisation transition in Bi-based relaxor ferroelectrics, J Appl Phys, 115, 10.1063/1.4869132 Davies, 2011, Enhanced High-Temperature Piezoelectric Coefficients and Thermal Stability of Fe- and Mn-Substituted Na0.5Bi0.5TiO3 Ceramics, J Am Ceram Soc, 94, 1314, 10.1111/j.1551-2916.2011.04441.x Wang, 2014, Structural stability and depolarization of manganese-doped (Bi0.5Na0.5)1−xBaxTiO3 relaxor ferroelectrics, J Appl Phys, 116, 10.1063/1.4898322 Anthoniappen, 2016, Dielectric, ferroelectric, and depolarization properties of B-site manganese-doped 0.925(Bi0.5Na0.5)TiO3–0.075BaTiO3 solid solutions, Ceram Int, 42, 8402, 10.1016/j.ceramint.2016.02.056 Peng, 2017, Enhanced ferroelectric properties and thermal stability of Mn-doped 0.96(Bi0.5Na0.5)TiO3-0.04BiAlO3 ceramics, J Am Ceram Soc, 100, 1030, 10.1111/jace.14645 Li, 2017, Delayed thermal depolarization of Bi0.5Na0.5TiO3-BaTiO3 by doping acceptor Zn2+ with large ionic polarizability, J Appl Phys, 122, 10.1063/1.5012889 Verma, 2018, Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.50Bi0.50)TiO3-0.06BaTiO3 ceramics, J Appl Phys, 123, 10.1063/1.5036927 Cao, 2015, Enhanced depolarization temperature in 0.90NBT–0.05KBT–0.05BT ceramics induced by BT nanowires, J Phys Chem Solids, 78, 41, 10.1016/j.jpcs.2014.10.004 Riemer, 2017, Stress-induced phase transition in lead-free relaxor ferroelectric composites, Acta Mater, 136, 271, 10.1016/j.actamat.2017.07.008 Bai, 2017, Lead-free BNT-based composite materials: enhanced depolarization temperature and electromechanical behavior, Dalton Trans, 46, 15340, 10.1039/C7DT02846F Mahajan, 2017, Effect of phase transitions on thermal depoling in lead-free 0.94(Bi0.5Na0.5TiO3)–0.06(BaTiO3) based piezoelectrics, J Phys Chem C, 121, 5709, 10.1021/acs.jpcc.6b12501 Bai, 2018, Enhanced thermal stability, hardening of piezoelectric property, and mediated electromechanical response in (Bi0.5Na0.5)TiO3-based piezoceramics via composite approach, Ceram Int, 44, 17022, 10.1016/j.ceramint.2018.06.145 Deng, 2018, 0–3 type magnetoelectric 0.94Na0.5Bi0.5TiO3-0.06BaTiO3: CoFe2O4 composite ceramics with a deferred thermal depolarization, J Eur Ceram Soc, 38, 1407, 10.1016/j.jeurceramsoc.2017.11.004 Jonker, 1972, The Nature of Aging in Ferroelectric Ceramics, J Am Ceram Soc, 55, 57, 10.1111/j.1151-2916.1972.tb13404.x Carl, 1977, Electrical after-effects in Pb(Ti, Zr)O3 ceramics, Ferroelectrics, 17, 473, 10.1080/00150197808236770 Lupascu, 2005, Fatigue In Bulk Lead Zirconate Titanate Actuator Materials, Adv Eng Mater, 7, 882, 10.1002/adem.200500117 Zhang, 2005, Heterogeneity of fatigue in bulk lead zirconate titanate, Acta Mater, 53, 2203, 10.1016/j.actamat.2005.01.048 Balke, 2009, Degradation of lead-zirconate-titanate ceramics under different dc loads, J Appl Phys, 105, 10.1063/1.3126707 Genenko, 2015, Mechanisms of aging and fatigue in ferroelectrics, Mater Sci Eng, B, 192, 52, 10.1016/j.mseb.2014.10.003 Pan, 1992, Fatigue of Ferroelectric Polarization and the Electric Field Induced Strain in Lead Lanthanum Zirconate Titanate Ceramics, J Am Ceram Soc, 75, 1534, 10.1111/j.1151-2916.1992.tb04221.x Jiang, 1994, Electric Fatigue in Lead Zirconate Titanate Ceramics, J Am Ceram Soc, 77, 211, 10.1111/j.1151-2916.1994.tb06979.x Jiang, 1994, Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics, J Appl Phys, 75, 7433, 10.1063/1.356637 Nuffer, 2002, Microstructural modifications of ferroelectric lead zirconate titanate ceramics due to bipolar electric fatigue, J Eur Ceram Soc, 22, 2133, 10.1016/S0955-2219(02)00017-1 Zhang Y, Lupascu D.C., Balke N, Rödel J. Near electrode fatigue in lead zirconate titanate ceramics. J De Phys IV 2005;128:97–103. Balke, 2007, Fatigue of Lead Zirconate Titanate Ceramics. I: Unipolar and DC Loading, J Am Ceram Soc, 90, 1081, 10.1111/j.1551-2916.2007.01520.x Balke, 2007, Fatigue of Lead Zirconate Titanate Ceramics. II: Sesquipolar Loading, J Am Ceram Soc, 90, 1088, 10.1111/j.1551-2916.2007.01521.x Zhukov, 2010, Genenko YA and Seggern Hv. Effect of bipolar electric fatigue on polarization switching in lead-zirconate-titanate ceramics, J Appl Phys, 108, 10.1063/1.3452326 Warren, 1995, Polarization suppression in Pb(Zr, Ti)O3 thin films, J Appl Phys, 77, 6695, 10.1063/1.359083 Scott, 1991, Quantitative measurement of space-charge effects in lead zirconate-titanate memories, J Appl Phys, 70, 382, 10.1063/1.350286 Colla, 1997, Fatigued state of the Pt-PZT-Pt system, Integr Ferroelectr, 18, 19, 10.1080/10584589708221682 Larsen, 1994, Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness: Blocking layer model, J Appl Phys, 76, 2405, 10.1063/1.357589 Tagantsev, 2001, Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features, J Appl Phys, 90, 1387, 10.1063/1.1381542 Luo, 2011, Bipolar and unipolar fatigue of ferroelectric BNT-based lead-free piezoceramics, J Am Ceram Soc, 94, 529, 10.1111/j.1551-2916.2010.04101.x Luo, 2011, Effect of ferroelectric long-range order on the unipolar and bipolar electric fatigue in Bi1/2Na1/2TiO3-based lead-free piezoceramics, J Am Ceram Soc, 94, 3927, 10.1111/j.1551-2916.2011.04605.x Ehmke, 2011, Stabilization of the fatigue-resistant phase by CuO addition in (Bi1/2Na1/2)TiO3-BaTiO3, J Am Ceram Soc, 94, 2473, 10.1111/j.1551-2916.2010.04379.x Patterson, 2012, Bipolar piezoelectric fatigue of Bi(Zn0.5Ti0.5)O3-(Bi0.5K0.5)TiO3-(Bi0.5Na0.5)TiO3 Pb-free ceramics, Appl Phys Lett, 101, 10.1063/1.4738770 Simons, 2012, Domain fragmentation during cyclic fatigue in 94%(Bi1/2Na1/2)TiO3-6%BaTiO3, J Appl Phys, 112, 10.1063/1.4745900 Guo, 2015, Nanofragmentation of ferroelectric domains during polarization fatigue, Adv Funct Mater, 25, 270, 10.1002/adfm.201402740 Shi, 2017, Electric-field induced phase transition and fatigue behaviors of (Bi0.5+x/2Na0.5-x/2)0.94Ba0.06Ti1-xFexO3 ferroelectrics, J Am Ceram Soc, 100, 1080, 10.1111/jace.14683 Damjanovic, 1998, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep Prog Phys, 61, 1267, 10.1088/0034-4885/61/9/002 Devonshire, 1954, Theory of ferroelectrics, Adv Phys, 3, 85, 10.1080/00018735400101173 Kay, 1955, Electrostriction, Rep Prog Phys, 18, 230, 10.1088/0034-4885/18/1/306 Newnham, 1997, Electrostriction: Nonlinear electromechanical coupling in solid dielectrics, J Phys Chem B, 101, 10141, 10.1021/jp971522c Uchino, 1981, Electrostrictive Effects in Anti-Ferroelectric Perovskites, J Appl Phys, 52, 1455, 10.1063/1.329780 Li, 1991, The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic, J Appl Phys, 69, 7219, 10.1063/1.347616 Lynch, 1996, The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT, Acta Mater, 44, 4137, 10.1016/S1359-6454(96)00062-6 Fang, 1999, Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic, J Mater Sci, 34, 4001, 10.1023/A:1004603729657 Hoffmann, 2001, Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics, Acta Mater, 49, 1301, 10.1016/S1359-6454(01)00025-8 Yang, 2003, Field-induced strain associated with polarization reversal in a rhombohedral ferroelectric ceramic, J Mater Res, 18, 2869, 10.1557/JMR.2003.0400 Bolten, 2004, Reversible and irreversible piezoelectric and ferroelectric response in ferroelectric ceramics and thin films, J Eur Ceram Soc, 24, 725, 10.1016/S0955-2219(03)00317-0 Achuthan, 2005, Domain switching in ferroelectric ceramic materials under combined loads, J Appl Phys, 97, 10.1063/1.1925327 Liu, 2007, Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading, Appl Phys Lett, 90 Kungl, 2007, Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data, Acta Mater, 55, 1849, 10.1016/j.actamat.2006.10.046 Achuthan, 2009, A study of mechanisms of domain switching in a ferroelectric material via loading rate effect, Acta Mater, 57, 3868, 10.1016/j.actamat.2009.04.043 Sawaguchi, 1951, Antiferroelectric Structure of Lead Zirconate, Phys Rev, 83, 1078, 10.1103/PhysRev.83.1078 Liu, 2011, A brief review on the model antiferroelectric PbZrO3 perovskite-like material, Zeitschrift für Kristallographie-Cryst Mater, 226, 163, 10.1524/zkri.2011.1336 Shirane, 1954, Dielectric Properties and Phase Transitions of NaNbO3 and (Na, K)NbO3, Phys Rev, 96, 581, 10.1103/PhysRev.96.581 Cross, 1958, Electric Double Hysteresis in (KxNa1-x)NbO3 Single Crystals, Nature, 181, 178, 10.1038/181178a0 Darlington, 1973, The low-temperature phase transition of sodium niobate and the structure of the low-temperature phase, N Acta Crystallographica, 29, 2171, 10.1107/S0567740873006308 Lanfredi, 2000, Dense ceramics of NaNbO3 produced from powders prepared by a new chemical route, J Eur Ceram Soc, 20, 983, 10.1016/S0955-2219(99)00223-X Francombe, 1958, Structural and electrical properties of silver niobate and silver tantalate, Acta Crystallogr A, 11, 175, 10.1107/S0365110X58000463 Fu, 2007, AgNbO3: A lead-free material with large polarization and electromechanical response, Appl Phys Lett, 90, 10.1063/1.2751136 Hao, 2014, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials, Prog Mater Sci, 63, 1, 10.1016/j.pmatsci.2014.01.002 Park, 1997, Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics, J Appl Phys, 82, 1798, 10.1063/1.365982 Shebanov, 1994, Electric field-induced antiferroelectric-to-ferroelectric phase transition in lead zirconate titanate stannate ceramics modified with lanthanum, J Appl Phys, 76, 4301, 10.1063/1.357315 Ren, 2004, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nat Mater, 3, 91, 10.1038/nmat1051 Liu, 2006, Ferroelectric aging effect in hybrid-doped BaTiO3 ceramics and the associated large recoverable electrostrain, Appl Phys Lett, 89, 10.1063/1.2360933 Zhang, 2004, Large recoverable electrostrain in Mn-doped (Ba, Sr)TiO3 ceramics, Appl Phys Lett, 85, 5658, 10.1063/1.1829394 Feng, 2007, Aging effect and large recoverable electrostrain in Mn-doped KNbO3-based ferroelectrics, Appl Phys Lett, 91, 10.1063/1.2756355 Liu, 2011, Large digital-characterized electrostrain in Mn-doped (Pb, Sr)TiO3 electro-shape-memory ceramics, Appl Phys Lett, 99 Rödel, 2009, Perspective on the Development of Lead-free Piezoceramics, J Am Ceram Soc, 92, 1153, 10.1111/j.1551-2916.2009.03061.x Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties, J Appl Phys, 103 Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties, J Appl Phys, 103 Hao, 2015, Ultrahigh strain response with fatigue-free behavior in (Bi0.5Na0.5)TiO3-based lead-free piezoelectric ceramics, J Phys D Appl Phys, 48, 10.1088/0022-3727/48/47/472001 Hao, 2013, Li X and Gao X. Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system, J Appl Phys, 113, 10.1063/1.4795511 Li, 2016, Grain size dependent electrostrain in Bi1/2Na1/2TiO3-SrTiO3 incipient piezoceramics, J Eur Ceram Soc, 36, 2849, 10.1016/j.jeurceramsoc.2016.04.024 Bai, 2016, Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics, Dalton Trans, 45, 8573, 10.1039/C6DT00906A Zhao, 2018, Large strain of temperature insensitive in (1–x)(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–xSr0.7La0.2TiO3 lead-free ceramics, Ceram Int, 44, 11331, 10.1016/j.ceramint.2018.03.182 Fan, 2018, Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezoceramics, J Eur Ceram Soc, 38, 4404, 10.1016/j.jeurceramsoc.2018.05.028 Wu, 2020, Excellent temperature stability with giant electrostrain in Bi0.5Na0.5TiO3-based ceramics, Scr Mater, 179, 70, 10.1016/j.scriptamat.2019.12.022 Hiruma, 2008, Piezoelectric Properties of (Bi1/2Na1/2)TiO3 Based Solid Solution for Lead-Free High-Power Applications, Jpn J Appl Phys, 47, 7659, 10.1143/JJAP.47.7659 Wang, 2012, Temperature-Dependent Properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 Lead-Free Piezoceramics, J Am Ceram Soc, 95, 2241, 10.1111/j.1551-2916.2012.05162.x He, 2020, Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics, J Mater Chem C, 8, 2411, 10.1039/C9TC04864B Hao, 2012, Phase transitions, relaxor behavior, and electrical properties in (1–x)(Bi0.5Na0.5)TiO3-x(K0.5Na0.5)NbO3 lead-free piezoceramics, J Mater Res, 27, 2943, 10.1557/jmr.2012.328 Rahman, 2015, Effect of sintering temperature on the electromechanical properties of 0.945Bi0.5Na0.5TiO3-0.055BaZrO3 ceramics, J Korean Phys Soc, 66, 1072, 10.3938/jkps.66.1072 Rahman, 2014, Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics, J Alloy Compd, 593, 97, 10.1016/j.jallcom.2014.01.031 Ullah, 2011, Phase Transition, Electrical Properties, and Temperature-Insensitive Large Strain in BiAlO3-Modified Bi0.5(Na0.75K0.25)0.5TiO3 Lead-Free Piezoelectric Ceramics, J Am Ceram Soc, 94, 3915, 10.1111/j.1551-2916.2011.04595.x Bai, 2016, Electromechanical properties and structure evolution in BiAlO3-modified Bi0.5Na0.5TiO3-BaTiO3 lead-free piezoceramics, J Alloy Compd, 667, 6, 10.1016/j.jallcom.2016.01.144 Chen, 2017, Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3, J Eur Ceram Soc, 37, 2365, 10.1016/j.jeurceramsoc.2017.02.009 Jia, 2018, Large electrostrain response in binary Bi1/2Na1/2TiO3-Ba(Mg1/3Nb2/3)O3 solid solution ceramics, J Alloy Compd, 741, 7, 10.1016/j.jallcom.2017.12.274 Maqbool, 2014, Enhanced electric field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–BaTiO3–SrZrO3 lead-free ceramics, Ceram Int, 40, 11905, 10.1016/j.ceramint.2014.04.026 Janbua, 2016, High Strain Response of the (1–x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBaSnO3 Lead Free Piezoelectric Ceramics System, Ferroelectrics, 490, 13, 10.1080/00150193.2015.1070655 Li, 2017, Large strain response in Bi4Ti3O12 modified BNT-BT piezoelectric ceramics, Ceram Int, 43, 1008, 10.1016/j.ceramint.2016.10.033 Wei, 2018, Composition-induced phase evolution and high strain response in Ba(Zn1/3Nb2/3)O3-modified (Bi0.5Na0.5)TiO3-based lead-free ferroelectrics. Rsc, Advances, 8, 12269 Gong, 2019, Large electric field-induced strain in ternary Bi0.5Na0.5TiO3-BaTiO3-Sr2MnSbO6 lead-free ceramics, Ceram Int, 45, 7173, 10.1016/j.ceramint.2018.12.224 Wang, 2019, Tailoring electromechanical performance in BiScO3-modified Bi0.5Na0.5TiO3-based lead-free piezoceramics, J Mater Sci: Mater Electron, 31, 1491 Gong, 2020, Composition-dependent phase evolution and enhanced electrostrain properties of (Bi0.5Na0.5)TiO3–BaTiO3–Bi(Li0.5Ta0.5)O3 lead-free ceramics, J Alloy Compd, 818, 10.1016/j.jallcom.2019.152822 Ullah, 2012, Structure, ferroelectric properties, and electric field-induced large strain in lead-free Bi0.5(Na, K)0.5TiO3–(Bi0.5La0.5)AlO3 piezoelectric ceramics, Ceram Int, 38, S363, 10.1016/j.ceramint.2011.05.013 Hong, 2012, Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution, J Intell Mater Syst Struct, 24, 1343, 10.1177/1045389X12447986 Lee, 2013, Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics exhibiting large strain with small hysteresis, Ceram Int, 39, S705, 10.1016/j.ceramint.2012.10.166 Hao, 2013, Large Strain Response in 0.99(Bi0.5Na0.4K0.1)TiO3-0.01(KxNa1-x)NbO3 Lead-Free Ceramics Induced by the Change of K/Na Ratio in (KxNa1-x)NbO3, J Am Ceram Soc, 96, 3133, 10.1111/jace.12462 Hao, 2013, Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics, J Appl Phys, 114, 10.1063/1.4816047 Jaita, 2014, Dielectric, ferroelectric and electric field-induced strain behavior of Ba(Ti0.90Sn0.10)O3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoelectrics, J Alloy Compd, 596, 98, 10.1016/j.jallcom.2014.01.183 Hussain, 2014, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics, Mater Chem Phys, 143, 1282, 10.1016/j.matchemphys.2013.11.035 Sumang, 2015, Large strain in lead-free piezoelectric (1–x−y)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3–yBi0.5Li0.5TiO3 system near MPB prepared via the combustion technique, Ceram Int, 41, S127, 10.1016/j.ceramint.2015.03.227 Lee, 2015, Phase transition and electrical characteristics of Bi0.5(Na0.78K0.22)0.5TiO3–BiFeO3 lead-free piezoelectric ceramics, Ceram Int, 41, 10298, 10.1016/j.ceramint.2015.04.063 Jaita, 2015, Large electric field-induced strain and piezoelectric responses of lead-free Bi0.5(Na0.80K0.20)0.5TiO3-Ba(Ti0.90Sn0.10)O3 ceramics near morphotropic phase boundary, Electron Mater Lett, 11, 828, 10.1007/s13391-015-4495-1 Guo, 2015, Origin of the large strain response in tenary SrTi0.8Zr0.2O3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoceramics, J Mater Sci, 50, 403, 10.1007/s10853-014-8599-z Hao, 2015, Large electric-field-induced strain in SrZrO3 modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free electromechanical ceramics with fatigue-resistant behavior, J Alloy Compd, 647, 857, 10.1016/j.jallcom.2015.06.151 Hao, 2015, Large strain response and fatigue-resistant behavior in lead-free Bi0.5(Na0.80K0.20)0.5TiO3–(K0.5Na0.5)MO3 (M = Sb, Ta) ceramics. RSC, Advances, 5, 82605 Li, 2019, Thermally-stable large strain in Bi(Mn0.5Ti0.5)O3 modified 0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3 ceramics, J Eur Ceram Soc, 39, 1827, 10.1016/j.jeurceramsoc.2019.01.009 Wei, 2019, Sr(Zn1/3Nb2/3)O3-induced R3c to P4bm transition and large field-induced strain in 0.80(Bi0.5Na0.5)TiO3–0.20SrTiO3 ceramics, J Mater Res, 34, 1210, 10.1557/jmr.2019.91 Wu, 2018, Large electromechanical strain and electrostrictive effect in (1–x)(Bi0.5Na0.5TiO3–SrTiO3)–xLiNbO3 ternary lead-free piezoelectric ceramics, J Mater Sci: Mater Electron, 30, 200 Yin, 2016, Electrical Properties and Relaxor Phase Evolution of Li-Modified BNT-BKT-BT Lead-Free Ceramics, J Am Ceram Soc, 99, 2354, 10.1111/jace.14247 Dinh, 2013, Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J Korean Phys Soc, 62, 1004, 10.3938/jkps.62.1004 Liu, 2014, Evolution of structure and electrical properties with lanthanum content in [(Bi1/2Na1/2)0.95Ba0.05]1−xLaxTiO3 ceramics, J Eur Ceram Soc, 34, 2997, 10.1016/j.jeurceramsoc.2014.03.017 Yao, 2015, Electric field-induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics, ACS Appl Mater Interfaces, 7, 5066, 10.1021/acsami.5b00420 Lee, 2010, Enhanced Electric-Field-Induced Strain at the Ferroelectric-Electrostrcitive Phase Boundary of Yttrium-Doped Bi0.5(Na0.82K0.18)0.5TiO3 Lead-Free Piezoelectric Ceramics, J Korean Phys Soc, 57, 892, 10.3938/jkps.57.892 Zuo, 2008, Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics, J Eur Ceram Soc, 28, 871, 10.1016/j.jeurceramsoc.2007.08.011 Pham, 2010, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater Lett, 64, 2219, 10.1016/j.matlet.2010.07.048 Li, 2017, Giant field-induced strain in Nb2O5-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Ceram Int, 43, 5367, 10.1016/j.ceramint.2017.01.084 Obilor, 2018, Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics, Mater Res Bull, 97, 385, 10.1016/j.materresbull.2017.09.032 Hussain, 2010, Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics, Sens Actuators, A, 158, 84, 10.1016/j.sna.2009.12.027 Chen, 2014, Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics, J Eur Ceram Soc, 34, 4223, 10.1016/j.jeurceramsoc.2014.05.044 Han, 2013, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J Appl Phys, 113, 10.1063/1.4801893 Xi, 2020, Large strain with low hysteresis in Sn-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoceramics, J Mater Sci, 55, 1388, 10.1007/s10853-019-04154-8 Zhou, 2018, Ferroelectric-quasiferroelectric-ergodic relaxor transition and multifunctional electrical properties in Bi0.5Na0.5TiO3-based ceramics, J Am Ceram Soc, 101, 1554, 10.1111/jace.15308 Do, 2012, Low temperature sintering of lead-free Bi0.5(Na0.82K0.18)0.5TiO3 piezoelectric ceramics by co-doping with CuO and Nb2O5, Ceram Int, 38S, S359, 10.1016/j.ceramint.2011.05.012 Jin, 2014, Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions, J Alloy Compd, 585, 185, 10.1016/j.jallcom.2013.09.152 Li, 2016, Large strain response in (Mn, Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 lead-free piezoelectric ceramics, Ceram Int, 42, 14886, 10.1016/j.ceramint.2016.06.127 Hao, 2016, Field-induced large strain in lead-free (Bi0.5Na0.5)1−xBaxTi0.98(Fe0.5Ta0.5)0.02O3 piezoelectric ceramics, J Alloy Compd, 677, 96, 10.1016/j.jallcom.2016.03.246 Li, 2016, 0.46% unipolar strain in lead-free BNT-BT system modified with Al and Sb, Mater Lett, 184, 152, 10.1016/j.matlet.2016.07.150 Xie, 2018, Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics, J Alloy Compd, 743, 73, 10.1016/j.jallcom.2018.01.367 Wei, 2019, Giant strain of 0.65% obtained in B-site complex cations (Zn1/3Nb2/3)4+-modified BNT-7BT ceramics, J Alloy Compd, 782, 611, 10.1016/j.jallcom.2018.12.210 Nguyen, 2012, Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta, J Alloy Compd, 511, 237, 10.1016/j.jallcom.2011.09.043 Dung, 2015, Role of Sintering Temperature on Giant Field-Induced Strain in Lead-Free Bi0.5(Na, K)0.5TiO3-Based Ceramics, Ferroelectrics, 474, 113, 10.1080/00150193.2015.996458 Nguyen, 2012, Enhancement in the Microstructure and the Strain Properties of Bi1/2(Na, K)1/2TiO3-based Lead-free Ceramics by Li Substitution, J Korean Phys Soc, 61, 895, 10.3938/jkps.61.895 Malik, 2016, Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics, J Alloy Compd, 682, 302, 10.1016/j.jallcom.2016.04.297 Zhang, 2018, Modulation of electrostriction and strain response in bismuth sodium titanate-based ceramics, J Am Ceram Soc, 101, 3005, 10.1111/jace.15459 Ni, 2012, Effects of A-site vacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi0.5+x(Na0.82K0.18)0.5−3xTiO3 and Bi0.5+y(Na0.82K0.18)0.5TiO3, J Alloy Compd, 541, 150, 10.1016/j.jallcom.2012.06.129 Liu, 2017, Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry, J Eur Ceram Soc, 37, 4585, 10.1016/j.jeurceramsoc.2017.05.042 Tong, 2016, Giant electrostrain under low driving field in Bi1/2Na1/2TiO3-SrTiO3 ceramics for actuator applications, Ceram Int, 42, 16153, 10.1016/j.ceramint.2016.07.133 Lee, 2011, Electric field-induced deformation behavior in mixed Bi0.5Na0.5TiO3 and Bi0.5(Na0.75K0.25)0.5TiO3-BiAlO3, Appl Phys Lett, 99 Khaliq, 2018, Ferroelectric seeds-induced phase evolution and large electrostrain under reduced poling field in bismuth-based composites, Ceram Int, 44, 13278, 10.1016/j.ceramint.2018.04.157 Sheeraz, 2019, Stress driven high electrostrain at low field in incipient piezoelectrics, J Eur Ceram Soc, 39, 4688, 10.1016/j.jeurceramsoc.2019.07.049 Park, 1997, Variations of Structure and Dielectric Properties on Substituting A-site Cations for Sr2+ in (Na1/2Bi1/2)TiO3, J Mater Res, 12, 2152, 10.1557/JMR.1997.0288 Rout, 2010, Dielectric and Raman scattering studies of phase transitions in the (100–x)Na0.5Bi0.5TiO3–xSrTiO3 system, J Appl Phys, 108, 10.1063/1.3490781 Li, 2014, Large Strain Response and Fatigue-Resistant Behavior in Ternary Bi0.5Na0.5TiO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 Solid Solutions, J Am Ceram Soc, 97, 3615, 10.1111/jace.13176 Ullah, 2013, Large strain under a low electric field in lead-free bismuth-based piezoelectrics, Appl Phys Lett, 103, 10.1063/1.4813420 Dong, 2018, Large strain response with low driving field in Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3-Bi(Mg2/3Nb1/3)O3 ceramics, J Am Ceram Soc, 101, 3947, 10.1111/jace.15589 Zhu, 2018, Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 lead-free piezoceramics, Ceram Int, 44, 7851, 10.1016/j.ceramint.2018.01.220 Acosta, 2014, Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 Lead-Free Incipient Piezoceramic, J Am Ceram Soc, 97, 1937, 10.1111/jace.12884 Wang, 2012, Large Strain Response in the Ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 Solid Solutions, J Am Ceram Soc, 95, 1955, 10.1111/j.1551-2916.2012.05119.x Jin, 2014, dielectric properties and large strain response in Zr-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free ceramics, Ceram Int, 40, 6143, 10.1016/j.ceramint.2013.11.066 Qian, 2018, Nanoscale origins of small hysteresis and remnant strain in Bi0.5Na0.5TiO3-based lead-free ceramics, J Eur Ceram Soc, 38, 361, 10.1016/j.jeurceramsoc.2017.06.003 Fan, 2019, Large strain under low driving field in lead-free relaxor/ferroelectric composite ceramics, J Am Ceram Soc, 102, 4113, 10.1111/jace.16256 Zhang, 2009, High-Strain Lead-free Antiferroelectric Electrostrictors, Adv Mater, 21, 4716, 10.1002/adma.200901516 Zhang, 2010, Phase diagram and electrostrictive properties of Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 ceramics, Appl Phys Lett, 97 Kumar, 2013, Electromechanical strain and bipolar fatigue in Bi(Mg1/2Ti1/2)O3-(Bi1/2K1/2)TiO3-(Bi1/2Na1/2)TiO3 ceramics, J Appl Phys, 114, 10.1063/1.4817524 Tian, 2014, Bipolar fatigue-resistant behavior in ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions, Scr Mater, 83, 25, 10.1016/j.scriptamat.2014.03.027 Zhu, 2019, Bipolar and unipolar fatigue property in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–SrTiO3 lead-free piezoelectric ceramics, Physica B: Physics of Condensed Matter, 575 411716 Hao, 2017, Fatigue-resistant, temperature-insensitive strain behavior and strong red photoluminescence in Pr-modified 0.92(Bi0.5Na0.5)TiO3–0.08(Ba0.90Ca0.10)(Ti0.92Sn0.08)O3 lead-free ceramics, J Eur Ceram Soc, 37, 877, 10.1016/j.jeurceramsoc.2016.09.015 Liu, 2017, Pressure driven depolarization behavior of Bi0.5Na0.5TiO3 based lead-free ceramics, Appl Phys Lett, 110, 10.1063/1.4984088 Simons, 2011, Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3–6%BaTiO3, Appl Phys Lett, 98, 10.1063/1.3557049 Zhou, 2019, Electrical properties and relaxor phase evolution of Nb-Modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-SrTiO3 lead-free ceramics, J Eur Ceram Soc, 39, 2310, 10.1016/j.jeurceramsoc.2019.02.008 Li, 2018, Ferroelectric P4mm to relaxor P4bm transition and temperature-insensitive large strains in Bi(Mg0.5Ti0.5)O3-modified tetragonal 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 lead-free ferroelectric ceramics, J Eur Ceram Soc, 38, 1381, 10.1016/j.jeurceramsoc.2017.12.022 Kang, 2019, BNT-based multi-layer ceramic actuator with enhanced temperature stability, J Alloy Compd, 771, 541, 10.1016/j.jallcom.2018.08.311 Malik, 2015, Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications, J Am Ceram Soc, 98, 3842, 10.1111/jace.13722 Cao, 2005, The strain limits on switching, Nat Mater, 4, 727, 10.1038/nmat1506 Chiang, 1998, Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family, Appl Phys Lett, 73, 3683, 10.1063/1.122862 Park, 2014, Solid-state conversion of (Na1/2Bi1/2)TiO3-BaTiO3-(K1/2Na1/2)NbO3 single crystals and their piezoelectric properties, Appl Phys Lett, 104, 10.1063/1.4881615 Bai, 2013, Structure and strain behavior of <001> textured BNT-based ceramics by template grain growth, Mater Lett, 97, 137, 10.1016/j.matlet.2013.01.088 Bai, 2014, Effect of SrTiO3 template on electric properties of textured BNT–BKT ceramics prepared by templated grain growth process, J Alloy Compd, 603, 149, 10.1016/j.jallcom.2014.03.033 Fancher, 2014, Effect of Texture on Temperature-Dependent Properties of K0.5Na0.5NbO3 Modified Bi1/2Na1/2TiO3-xBaTiO3, J Am Ceram Soc, 97, 2557, 10.1111/jace.12986 Hussain, 2015, Na0.5Bi0.5TiO3–BaZrO3 textured ceramics prepared by reactive templated grain growth method, Ceram Int, 41, S26, 10.1016/j.ceramint.2015.03.188 Bai, 2016, Effect of different templates and texture on structure evolution and strain behavior of <001>-textured lead-free piezoelectric BNT-based ceramics, J Alloy Compd, 656, 13, 10.1016/j.jallcom.2015.09.209 Jiang, 2016, Grain oriented Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant strain response derived from single-crystalline Na0.5Bi0.5TiO3-BaTiO3 templates, J Eur Ceram Soc, 36, 1377, 10.1016/j.jeurceramsoc.2015.12.025 Bai, 2017, Low electric field-driven giant strain response in <001> textured BNT-based lead-free piezoelectric materials, J Mater Sci, 52, 3169, 10.1007/s10853-016-0606-0 Chen, 2018, The giant strain response mechanism in textured Mn-modified 0.925(Bi0.5Na0.5)TiO3-0.075BaTiO3 relaxor ferroelectric ceramics, J Alloy Compd, 737, 705, 10.1016/j.jallcom.2017.12.173 Ma, 2015, Preparation and enhanced electric-field-induced strain of textured 91BNT–6BT–3KNN lead-free piezoceramics by TGG method, J Mater Sci: Mater Electron, 27, 3076 Zou, 2016, Texture development and enhanced electromechanical properties in <00l>-textured BNT-based materials, Mater Lett, 184, 139, 10.1016/j.matlet.2016.08.039 Su Lee, 2012, Electric field induced polarization and strain of Bi-based ceramic composites, J Appl Phys, 112, 10.1063/1.4770372 Lee, 2013, Effect of Sintering Time on Strain in Ceramic Composite Consisting of 0.94Bi0.5(Na0.75K0.25)0.5TiO3–0.06BiAlO3 with (Bi0.5Na0.5)TiO3, Jpn J Appl Phys, 52 Zhang, 2015, Large Strain in Relaxor/Ferroelectric Composite Lead-Free Piezoceramics, Adv Electron Mater, 1, 1500018, 10.1002/aelm.201500018 Groh, 2014, Tailoring Strain Properties of (0.94−x)Bi1/2Na1/2TiO3-0.06BaTiO3-xK0.5Na0.5NbO3 Ferroelectric/Relaxor Composites, J Am Ceram Soc, 97, 1465, 10.1111/jace.12783 Dinh, 2015, Enhanced Low-Field Strain in Bi-Based Lead-Free Ferroelectric-Relaxor Composites, Ferroelectrics, 487, 142, 10.1080/00150193.2015.1071619 Dinh, 2016, Giant strain in lead-free relaxor/ferroelectric piezocomposite ceramics, J Korean Phys Soc, 68, 1439, 10.3938/jkps.68.1439 Khaliq, 2017, Large strain in Bi0.5(Na0.78K0.22)0.5TiO3–Bi(Mg0.5Ti0.5)O3 based composite ceramics under low driving field, Sens Actuators, A, 258, 174, 10.1016/j.sna.2017.03.021 Saleem, 2018, Revealing of Core Shell Effect on Frequency-Dependent Properties of Bi-based Relaxor/Ferroelectric Ceramic Composites, Sci Rep, 8, 14146, 10.1038/s41598-018-32133-7 Lim, 2018, Frequency dependence of polarization and strain in Bi0.5Na0.5TiO3-SrTiO3/Bi0.5(Na0.8K0.2)0.5TiO3 composites, Sens Actuators, A, 282, 163, 10.1016/j.sna.2018.09.034 Newnham, 2005 Kuwata, 1980, Electrostrictive Coefficients of Pb(Mg1⁄3Nb2⁄3)O3 Ceramics, Jpn J Appl Phys, 19, 2099, 10.1143/JJAP.19.2099 Anderson, 1990, Development of an active truss element for control of precision structures, Opt Eng, 29, 1333, 10.1117/12.55735 Yin, 2019, Perovskite Na0.5Bi0.5TiO3: a potential family of peculiar lead-free electrostrictors, J Mater Chem A, 7, 13658, 10.1039/C9TA03140E Ullah Khan, 2019, Boosting electrostriction and strain performance in bismuth sodium titanate-based ceramics via introducing low tolerance factor chemical modifier, Sens Actuators, A, 291, 156, 10.1016/j.sna.2019.03.043 Hao, 2013, Enhanced electrostricitive properties and thermal endurance of textured (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3 ceramics, J Appl Phys, 114, 10.1063/1.4817278 Bai, 2018, Large electrostrictive effect in lead-free (Bi0.5Na0.5)TiO3-based composite piezoceramics, Ceram Int, 44, 8628, 10.1016/j.ceramint.2018.02.081 Li, 2010, Large electrostrictive strain in lead-free Bi0.5Na0.5TiO3–BaTiO3–KNbO3 ceramics, Appl Phys A, 104, 117, 10.1007/s00339-010-6074-5 Tran, 2011, Lead-free electrostrictive bismuth perovskite ceramics with thermally stable field-induced strains, Mater Lett, 65, 2607, 10.1016/j.matlet.2011.05.059 Tran, 2013, Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient, Ceram Int, 39, S119, 10.1016/j.ceramint.2012.10.046 Wang, 2013, Large electrostrictive effect in ternary Bi0.5Na0.5TiO3-based solid solutions, J Appl Phys, 114 Shi, 2014, Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3 Solid Solutions, J Am Ceram Soc, 97, 848, 10.1111/jace.12712 Hao, 2015, Lead-free electrostrictive (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–(K0.5Na0.5)NbO3 ceramics with good thermostability and fatigue-free behavior, J Mater Sci, 50, 5328, 10.1007/s10853-015-9080-3 Bai, 2015, Phase diagram and electrostrictive effect in BNT-based ceramics, Solid State Commun, 206, 22, 10.1016/j.ssc.2015.01.004 Bai, 2016, Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics, Ceram Int, 42, 7669, 10.1016/j.ceramint.2016.01.181 Hao, 2016, Large electrostrictive effect and strong photoluminescence in rare-earth modified lead-free (Bi0.5Na0.5)TiO3-based piezoelectric ceramics, Scr Mater, 122, 10, 10.1016/j.scriptamat.2016.05.004 Pan, 2018, Large electrostrictive effect and high optical temperature sensing in Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.18Er0.02)TiO3 luminescent ferroelectrics, Ceram Int, 44, 5785, 10.1016/j.ceramint.2017.12.067 Wang, 2018, Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics, J Mater Sci, 53, 8844, 10.1007/s10853-018-2186-7 Jin, 2019, Ultra-slim pinched polarization-electric field hysteresis loops and thermally stable electrostrains in lead-free sodium bismuth titanate-based solid solutions, J Alloy Compd, 788, 1182, 10.1016/j.jallcom.2019.02.329 Li, 2020, Large electrostrictive effect and energy storage density in MnCO3 modified Na0.325Bi0.395Sr0.245□0.035TiO3 lead-free ceramics, Ceram Int, 46, 3374, 10.1016/j.ceramint.2019.10.047 Bai, 2017, Grain-orientated lead-free BNT-based piezoceramics with giant electrostrictive effect, Ceram Int, 43, 3339, 10.1016/j.ceramint.2016.11.175 Yao, 2017, Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances, Adv Mater, 29, 1601727, 10.1002/adma.201601727 Luo, 2019, Interface design for high energy density polymer nanocomposites, Chem Soc Rev, 48, 4424, 10.1039/C9CS00043G Liu, 2019, Glass–ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications, J Mater Chem C, 7, 15118, 10.1039/C9TC05253D Wang, 2020, Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage, J Mater Chem A, 8, 884, 10.1039/C9TA11527G Yang, 2017, Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics, Appl Phys Lett, 111, 10.1063/1.5000980 Yang, 2019, High energy-storage density of lead-free (Sr1−1.5xBix)Ti0.99Mn0.01O3 thin films induced by Bi3+-VSr dipolar defects, PCCP, 21, 16359, 10.1039/C9CP01368G Kong, 2020, Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications, J Am Ceram Soc, 103, 1722, 10.1111/jace.16844 Ogihara, 2009, High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics, J Am Ceram Soc, 92, 1719, 10.1111/j.1551-2916.2009.03104.x Gao, 2011, c/a Ratio-Dependent Energy-Storage Density in (0.9-x)Bi0.5Na0.5TiO3-xBaTiO3-0.1K0.5Na0.5NbO3 Ceramics, J Am Ceram Soc, 94, 4162, 10.1111/j.1551-2916.2011.04912.x Viola, 2012, Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics, J Phys D Appl Phys, 45, 10.1088/0022-3727/45/35/355302 Cao, 2015, High-energy storage density and efficiency of (1–x)[0.94NBT-0.06BT]-xST lead-free ceramics, Energy Technology, 3, 1198, 10.1002/ente.201500173 Liu, 2016, Energy storage properties of BiTi0.5Zn0.5O3-Bi0.5Na0.5TiO3-BaTiO3 relaxor ferroelectrics, Ceram Int, 42, 17876, 10.1016/j.ceramint.2016.08.087 Qiao, 2019, Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics, J Eur Ceram Soc, 39, 4778, 10.1016/j.jeurceramsoc.2019.07.003 Ma, 2019, Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics, J Mater Chem C, 7, 281, 10.1039/C8TC04447C Wu, 2019, Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications, J Mater Chem C, 7, 6222, 10.1039/C9TC01239G Tunkasiri, 1996, Dielectric strength of fine grained barium titanate ceramics, J Mater Sci Lett, 15, 1767, 10.1007/BF00275336 Wang, 2014, Energy-storage properties of (1–x)Bi0.47Na0.47Ba0.06TiO3–xKNbO3 lead-free ceramics, J Alloy Compd, 585, 14, 10.1016/j.jallcom.2013.09.052 Xu, 2015, A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution, J Mater Sci: Mater Electron, 27, 322 Xu, 2017, Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method, J Eur Ceram Soc, 37, 99, 10.1016/j.jeurceramsoc.2016.07.011 Shi, 2018, High energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-SrTi0.875Nb0.1O3 lead-free relaxor ferroelectrics, J Mater Sci Technol, 34, 2371, 10.1016/j.jmst.2018.06.008 Li, 2019, Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Ceram Int, 45, 19822, 10.1016/j.ceramint.2019.06.237 Zhao, 2015, Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 lead-free ceramics, J Mater Sci: Mater Electron, 27, 466 Yu, 2017, Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics, Ceram Int, 43, 7653, 10.1016/j.ceramint.2017.03.062 Li, 2016, Ergodic Relaxor State with High Energy Storage Performance Induced by Doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 Ceramics, J Electron Mater, 45, 5146, 10.1007/s11664-016-4731-y Tang, 2016, High energy density dielectrics in lead-free Bi0.5Na0.5TiO3–NaNbO3–Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature, J Mater Sci: Mater Electron, 27, 6526 Hu, 2018, Enhanced energy-storage performance and dielectric temperature stability of (1–x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics, Ceram Int, 44, 10968, 10.1016/j.ceramint.2018.03.176 Zhang, 2018, Enhanced energy-storage properties of (1–x)Na0.5Bi0.5TiO3-xBaSnO3 ceramics, Ceram Int, 44, S207, 10.1016/j.ceramint.2018.08.113 Ren, 2018, Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1□0.1TiO3 based ceramics, J Alloy Compd, 742, 683, 10.1016/j.jallcom.2018.01.254 Zhao, 2018, Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics, J Am Ceram Soc, 101, 5578, 10.1111/jace.15870 Zhang, 2018, Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics, J Eur Ceram Soc, 38, 2304, 10.1016/j.jeurceramsoc.2017.11.053 Zhang, 2019, Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics, J Alloy Compd, 775, 342, 10.1016/j.jallcom.2018.10.025 Pan, 2019, Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors, J Mater Chem C, 7, 4072, 10.1039/C9TC00087A Zhang, 2020, Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications, Ceram Int, 46, 98, 10.1016/j.ceramint.2019.08.238 Zhang, 2020, Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability, Chem Eng J, 383, 10.1016/j.cej.2019.123154 Zhu, 2020, High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties, J Mater Chem A, 8, 683, 10.1039/C9TA10347C Qiao, 2020, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics, Chem Eng J, 388, 10.1016/j.cej.2020.124158 Yan, 2020, Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy, Nano Energy, 75, 10.1016/j.nanoen.2020.105012 Zhang, 2021, Enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics, Chem Eng J, 406, 10.1016/j.cej.2020.126818 Wang, 2014, High energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1–x)ZrxTiO3 lead-free anti-ferroelectric ceramics, Ceram Int, 40, 4323, 10.1016/j.ceramint.2013.08.099 Butnoi, 2018, High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr, J Eur Ceram Soc, 38, 3822, 10.1016/j.jeurceramsoc.2018.04.024 Wang, 2019, A high-tolerance BNT-based ceramic with excellent energy storage properties and fatigue/frequency/thermal stability, Ceram Int, 45, 23233, 10.1016/j.ceramint.2019.08.019 Yang, 2019, High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics, J Eur Ceram Soc, 39, 3051, 10.1016/j.jeurceramsoc.2019.04.031 Kandula KR, Banerjee K, Raavi SSK, Asthana S. Enhanced Electrocaloric Effect and Energy Storage Density of Nd-Substituted 0.92NBT-0.08BT Lead Free Ceramic. Phys Status Solidi (a) 2018;215:1700915. Chen, 2019, Effect of Dy2O3 content on the dielectric, ferroelectric, and energy storage properties of lead-free 0.5Na0.5Bi0.5TiO3–0.5SrTiO3 bulk ceramics, J Mater Sci: Mater Electron, 30, 13556 Yin, 2017, Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics, Ceram Int, 43, 13541, 10.1016/j.ceramint.2017.07.060 Zhang, 2019, Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics, J Eur Ceram Soc, 39, 3057, 10.1016/j.jeurceramsoc.2019.02.004 Zhao, 2016, High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex-ion, J Alloy Compd, 666, 209, 10.1016/j.jallcom.2016.01.103 Xie, 2019, The evolution of phase structure, dielectric, strain, and energy storage density of complex-ions (Sr1/3Nb2/3)4+ doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics, J Phys Chem Solids, 126, 287, 10.1016/j.jpcs.2018.11.030 Yan, 2020, Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics, Ceram Int, 46, 281, 10.1016/j.ceramint.2019.08.261 Lu, 2016, Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping, J Materiomics, 2, 87, 10.1016/j.jmat.2016.02.001 Cui, 2018, Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics, J Mater Sci, 53, 9830, 10.1007/s10853-018-2282-8 Shi, 2019, The ferroelectric, dielectric and energy storage properties of Pb-free 0.6Na0.5Bi0.5TiO3-0.4SrTiO3 bulk ceramics modified by Fe2O3, Mater Res Express, 6, 10.1088/2053-1591/ab25c7 Zheng, 2008, Piezoelectric and Ferroelectric Properties of (Bi0.94-xLaxNa0.94)0.5Ba0.06TiO3 Lead-Free Ceramics. Journal of Physics D, Applied Physics, 41 Li, 2018, Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2□0.1)TiO3 ergodic relaxor ceramics, Materials Research Letters, 6, 345, 10.1080/21663831.2018.1457095 Yang, 2018, Enhanced Energy-Storage Properties of Lanthanum-Doped Bi0.5Na0.5TiO3-Based Lead-Free Ceramics, Energy Technology, 6, 357, 10.1002/ente.201700504 Chen, 2019, Improved dielectric energy storage performance of Pb-free 0.5Na0.5Bi0.5TiO3-0.5SrTiO3 ceramics modified with CaO, J Adv Dielectr, 08, 1850042, 10.1142/S2010135X1850042X Tong, 2019, Enhanced energy storage properties in Nb-modified Bi0.5Na0.5TiO3–SrTiO3 lead-free electroceramics, J Mater Sci: Mater Electron, 30, 5780 Patel, 2018, Enhanced energy storage performance of glass added 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ferroelectric ceramics, J Asian Ceram Soc, 3, 383, 10.1016/j.jascer.2015.07.004 Ding, 2014, Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method, Mater Lett, 114, 107, 10.1016/j.matlet.2013.09.103 Li, 2019, Structure-design strategy of 0–3 type (Bi0.32Sr0.42Na0.20)TiO3/MgO composite to boost energy storage density, efficiency and charge-discharge performance, J Eur Ceram Soc, 39, 2889, 10.1016/j.jeurceramsoc.2019.03.047 Pu, 2017, Improved energy storage properties of microwave sintered 0.475BNT-0.525BCTZ-xwt%MgO ceramics, Mater Lett, 189, 232, 10.1016/j.matlet.2016.12.020 Pu, 2018, Improved energy storage properties of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3 ceramics by microwave sintering, Ceram Int, 44, S242, 10.1016/j.ceramint.2018.08.105 Huang, 2015, Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering, J Eur Ceram Soc, 35, 1469, 10.1016/j.jeurceramsoc.2014.11.022 Ren, 2017, Energy storage density and tunable dielectric properties of BaTi0.85Sn0.15O3/MgO composite ceramics prepared by SPS, J Eur Ceram Soc, 37, 1501, 10.1016/j.jeurceramsoc.2016.12.016 Yao, 2018, Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3−0.06BaTiO3)−0.1NaNbO3 ceramics, Ceram Int, 44, 5961, 10.1016/j.ceramint.2017.12.174 Beauchamp EK. Effect of Microstructure on Pulse Electrical Strength of MgO. J Am Ceram Soc 1971;54:484–7. Wang, 2014, Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives, Ceram Int, 40, 14127, 10.1016/j.ceramint.2014.05.147 Yang, 2017, A lead free relaxation and high energy storage efficiency ceramics for energy storage applications, J Alloy Compd, 710, 436, 10.1016/j.jallcom.2017.03.261 Tong, 2020, Energy-storage properties of low-temperature Co-fired BNT-ST/AgPd multilayer lead-free ceramic capacitors, J Alloy Compd, 827, 10.1016/j.jallcom.2020.154260 Chen, 2009, Charge-discharge properties of lead zirconate stannate titanate ceramics, J Appl Phys, 034105 Li, 2017, Temperature induced high charge–discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics, Scr Mater, 141, 15, 10.1016/j.scriptamat.2017.07.010 Bai, 2019, Tailoring frequency-insensitive large field-induced strain and energy storage properties in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-modified (Bi0.5Na0.5)TiO3 lead-free ceramics, Dalton Trans, 48, 10160, 10.1039/C9DT01738K Yang, 2020, Toward Multifunctional Electronics: Flexible NBT-Based Film with a Large Electrocaloric Effect and High Energy Storage Property, ACS Appl Mater Interfaces, 12, 6082, 10.1021/acsami.9b21105 Scott, 2011, Electrocaloric Materials, Annu Rev Mater Res, 41, 229, 10.1146/annurev-matsci-062910-100341 Kumar, 2019, Enhanced Electrocaloric Effect and Energy Storage Density in Lead-Free 0.8Na0.5Bi0.5TiO3-0.2SrTiO3 Ceramics, Phys Status Solidi A, 1800786, 1 Mischenko, 2006, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3, Science, 311, 1270, 10.1126/science.1123811 Neese, 2008, Large Electrocaloric Effect in Ferroelectric Polymers near Room Temperature, Science, 321, 821, 10.1126/science.1159655 Ma, 2017, Highly Efficient Electrocaloric Cooling with Electrostatic Actuation, Science, 357, 1130, 10.1126/science.aan5980 Luo, 2012, Orientation and Phase Transition Dependence of the Electrocaloric Effect in 0.71PbMg1/3Nb2/3O3-0.29PbTiO3 Single Crystal, Appl Phys Lett, 101, 10.1063/1.4745185 Peng, 2013, A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature, Adv Funct Mater, 23, 2987, 10.1002/adfm.201202525 Peng, 2019, Phase-Transition Induced Giant Negative Electrocaloric Effect in a Lead-Free Relaxor Ferroelectric Thin Film, Energy Environ Sci, 12, 1708, 10.1039/C9EE00269C Zhao, 2019, Large Electrocaloric Effect over a Wide Temperature Range in BaTiO3-Modified Lead-Free Ceramics, J Mater Chem C, 7, 1353, 10.1039/C8TC06110F Zhuo, 2018, Giant Negative Electrocaloric Effect in (Pb, La)(Zr, Sn, Ti)O3 Antiferroelectrics near Room Temperature, ACS Appl Mater Interfaces, 10, 11747, 10.1021/acsami.8b00744 Moya, 2013, Giant Electrocaloric Strength in Single-Crystal BaTiO3, Adv Mater, 25, 1360, 10.1002/adma.201203823 Yang, 2013, Optimized electrocaloric refrigeration capacity in lead-free (1–x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 ceramics, Appl Phys Lett, 102 Le Goupil, 2019, Direct measurement of electrocaloric effect in lead-free (Na0.5Bi0.5)TiO3-based multilayer ceramic capacitors, J Eur Ceram Soc, 39, 3315, 10.1016/j.jeurceramsoc.2019.04.032 Rožič, 2011, Influence of the critical point on the electrocaloric response of relaxor ferroelectrics, J Appl Phys, 110, 10.1063/1.3641975 Peräntie, 2013, Electrocaloric properties in relaxor ferroelectric (1–x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 system, J Appl Phys, 114, 1, 10.1063/1.4829012 Khassaf, 2016, Perovskite ferroelectrics and relaxor-ferroelectric solid solutions with large intrinsic electrocaloric response over broad temperature ranges, J Mater Chem C, 4, 4763, 10.1039/C6TC01107A Kim, 2019, Direct and indirect measurements of the electro-caloric effect in (Bi, Na)TiO3-SrTiO3 ceramics, J Appl Phys, 126, 10.1063/1.5117773 Chauhan, 2015, Enhanced Electrocaloric Effect in Pre-stressed Ferroelectric Materials, Energy Technology, 3, 177, 10.1002/ente.201402185 Cao, 2014, Enhanced electrocaloric effect in lead-free NBT-based ceramics, Ceram Int, 40, 9273, 10.1016/j.ceramint.2014.01.149 Zheng, 2016, Structural and electrocaloric properties of multiferroic-BiFeO3 doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 solid solutions, J Alloy Compd, 663, 249, 10.1016/j.jallcom.2015.12.056 Le Goupil, 2016, Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics, Sci Rep, 6, 28251, 10.1038/srep28251 Li, 2016, Large electrocaloric effect in (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics by La2O3 addition, Mater Res Bull, 74, 57, 10.1016/j.materresbull.2015.10.010 Zannen, 2017, Electrocaloric effect and energy storage in lead free Gd0.02Na0.5Bi0.48TiO3 ceramic, Solid State Sci, 66, 31, 10.1016/j.solidstatesciences.2017.02.007 Turki, 2019, Enhancement of dielectric, piezoelectric, ferroelectric, and electrocaloric properties in slightly doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramic by samarium. Journal of Appllied, Physics, 125 Kandula, 2019, Nd3+ and Nb5+ co‐substitutioninducing a large electrocaloric response in Na0.5Bi0.5TiO3 lead‐free ceramics, Phys Status Solidi (b), 256, 1900001, 10.1002/pssb.201900001 Zheng, 2011, Electro-caloric behaviors of lead-free Bi0.5Na0.5TiO3-BaTiO3 ceramics, J Electroceram, 28, 20, 10.1007/s10832-011-9673-4 Bai, 2011, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature, Mater Res Bull, 46, 1866, 10.1016/j.materresbull.2011.07.038 Zannen, 2015, Electrocaloric effect and luminescence properties of lanthanide doped (Na1/2Bi1/2)TiO3 lead free materials, Appl Phys Lett, 107, 10.1063/1.4927280 Le Goupil, 2015, Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics, Appl Phys Lett, 107, 10.1063/1.4934759 Le Goupil, 2016, Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics, APL Mater, 4, 10.1063/1.4950790 Wei, 2019, Large electrocaloric effect near room temperature in lead–free Bi0.5Na0.5TiO3-based ergodic relaxor observed by differential scanning calorimetry, Scr Mater, 171, 10, 10.1016/j.scriptamat.2019.06.012 Li, 2017, Type–I pseudo–first–order phase transition induced electrocaloric effect in lead–free Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics, Appl Phys Lett, 110, 10.1063/1.4983029 Birks, 2017, Direct and indirect determination of electrocaloric effect in Na0.5Bi0.5TiO3, J Appl Phys, 121, 10.1063/1.4985067 Dunce, 2015, Interpretation of the Electrocaloric Effect in Na1/2Bi1/2TiO3-SrTiO3-PbTiO3 Solid Solutions, Ferroelectrics, 485, 143, 10.1080/00150193.2015.1061405 Tang, 2015, Influence of the composition-induced structure evolution on the electrocaloric effect in Bi0.5Na0.5TiO3-based solid solution, Ceram Int, 41, 5888, 10.1016/j.ceramint.2015.01.020 Li, 2017, Phase–composition and temperature dependence of electrocaloric effect in lead–free Bi0.5Na0.5TiO3–BaTiO3–(Sr0.7Bi0.2□0.1)TiO3 ceramics, J Eur Ceram Soc, 37, 4732, 10.1016/j.jeurceramsoc.2017.06.033 Zhang, 2020, Phase-transition induced optimization of electrostrain, electrocaloric refrigeration and energy storage of LiNbO3 doped BNT-BT ceramics, Ceram Int, 46, 1343, 10.1016/j.ceramint.2019.09.097 Li, 2020, Electrocaloric effect in BNT-based lead-free ceramics by local-structure and phase-boundary evolution, J Alloy Compd, 817, 10.1016/j.jallcom.2019.152794 Steele, 2001, Materials For Fuel-Cell Technologies, Nature, 414, 345, 10.1038/35104620 Wachsman, 2011, Lowering the Temperature of Solid Oxide Fuel Cells, Science, 334, 935, 10.1126/science.1204090 Mahato, 2015, Progress in material selection for solid oxide fuel cell technology: A review, Prog Mater Sci, 72, 141, 10.1016/j.pmatsci.2015.01.001 Bhattacharyya, 2018, Electrical conductivity study of B-site Ga doped non-stoichiometric sodium bismuth titanate ceramics, J Alloy Compd, 746, 54, 10.1016/j.jallcom.2018.02.213 Yang, 2018, Electrical conductivity and conduction mechanisms in (Na0.5Bi0.5TiO3)1–x(BiScO3)x (0.00 ≤ x ≤ 0.25) solid solutions, J Mater Chem C, 6, 11598, 10.1039/C8TC04679D Yang, 2018, Defect chemistry and electrical properties of sodium bismuth titanate perovskite, J Mater Chem A, 6, 5243, 10.1039/C7TA09245H Bhattacharyya, 2018, Influence of excess sodium addition on the structural characteristics and electrical conductivity of Na0.5Bi0.5TiO3, Solid State Ionics, 317, 115, 10.1016/j.ssi.2018.01.016 Wang, 2018, Influence of A-site off-stoichiomety on grain conductivity and oxygen relaxation behavior of Na0.5Bi0.5TiO3 ceramics, Solid State Ionics, 327, 117, 10.1016/j.ssi.2018.10.024 Zhang, 2018, Atomistic simulations of ion migration in sodium bismuth titanate (NBT) materials: towards superior oxide-ion conductors, J Mater Chem A, 6, 9116, 10.1039/C8TA02545B Yang, 2016, High Ionic Conductivity with Low Degradation in A-Site Strontium-Doped Nonstoichiometric Sodium Bismuth Titanate Perovskite, Chem Mater, 28, 5269, 10.1021/acs.chemmater.6b02555 Yang, 2017, Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit?, J Mater Chem A, 5, 21658, 10.1039/C7TA07667C Bhattacharyya, 2018, High ionic conductivity of Mg2+-doped non-stoichiometric sodium bismuth titanate, Acta Mater, 159, 8, 10.1016/j.actamat.2018.08.007 Huang, 2016, Intermediate-temperature conductivity of B-site doped Na0.5Bi0.5TiO3-based lead-free ferroelectric ceramics, Ceram Int, 42, 16798, 10.1016/j.ceramint.2016.07.170 Koch, 2017, Ionic conductivity of acceptor doped sodium bismuth titanate: influence of dopants, phase transitions and defect associates, J Mater Chem C, 5, 8958, 10.1039/C7TC03031B Steiner, 2019, The effect of Fe-acceptor doping on the electrical properties of Na1/2Bi1/2TiO3 and 0.94(Na1/2Bi1/2)TiO3–0.06BaTiO3, J Am Ceram Soc, 102, 5295, 10.1111/jace.16401 Liu, 2016, Enhanced ionic conductivity of Ag addition in acceptor-doped Bi0.5Na0.5TiO3 ferroelectrics. RSC, Advances, 6, 30623 Wang, 2019, Investigation of Sr, Mg codoped Na0.5Bi0.5TiO3 oxide ion conductor prepared by spark plasma sintering, Ionics, 25, 4265, 10.1007/s11581-019-03009-1 Meyer, 2017, Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3, J Mater Chem A, 5, 4368, 10.1039/C6TA10566A Li, 2016, Controlling mixed conductivity in Na1/2Bi1/2TiO3 using A-site non-stoichiometry and Nb-donor doping, J Mater Chem C, 4, 5779, 10.1039/C6TC01719C Alencar, 2004, Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor, Appl Phys Lett, 84, 4753, 10.1063/1.1760882 Du, 2014, Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramic, Appl Phys Lett, 104, 10.1063/1.4871378 Han, 2019, Dielectric and photoluminescence properties of fine-grained BaTiO3 ceramics co-doped with amphoteric Sm and valence-variable Cr, RSC Adv, 9, 4469, 10.1039/C8RA09326A Wu, 2015, Enhanced visible and mid-IR emissions in Er/Yb-codoped K0.5Na0.5NbO3 ferroelectric ceramics, Ceram Int, 41, 14041, 10.1016/j.ceramint.2015.07.018 Wu, 2015, Photoluminescence properties of Er/Pr-doped K0.5Na0.5NbO3 ferroelectric ceramics, J Am Ceram Soc, 98, 2139, 10.1111/jace.13605 Lin, 2019, Effects of compositional changes on up-conversion photoluminescence and electrical properties of lead-free Er-doped K0.5Na0.5NbO3-SrTiO3 transparent ceramics, J Alloy Compd, 784, 60, 10.1016/j.jallcom.2018.12.390 Chen, 2007, Strong Green and Red Upconversion Emission in Er3+-Doped Na1/2Bi1/2TiO3 Ceramics, J Am Ceram Soc, 90, 664, 10.1111/j.1551-2916.2006.01457.x Sun, 2011, Strong red emission in Pr doped (Bi0.5Na0.5)TiO3 ferroelectric ceramics, J Appl Phys, 110, 10.1063/1.3606425 Tian, 2013, Remanent-polarization-induced enhancement of photoluminescence in Pr3+-doped lead-free ferroelectric (Bi0.5Na0.5)TiO3 ceramic, Appl Phys Lett, 102, 10.1063/1.4790290 Luo, 2013, Effects of Er doping site and concentration on piezoelectric, ferroelectric, and optical properties of ferroelectric Na0.5Bi0.5TiO3, J Appl Phys, 114, 10.1063/1.4823812 Liu, 2016, Enhanced piezoelectricity, bright up-conversion and down-conversion photoluminescence in Er3+ doped 0.94(BiNa)0.5TiO3–0.06BaTiO3 multifunctional ceramics, Mater Res Bull, 74, 62, 10.1016/j.materresbull.2015.10.008 Sun, 2017, Upconversion and downconversion luminescence properties of Er3+ doped NBT ceramics synthesized via hydrothermal method, Opt Mater, 69, 244, 10.1016/j.optmat.2017.04.048 Wei, 2014, Bright green emission in Ho doped Bi1/2Na1/2TiO3 ferroelectric ceramics, Mater Lett, 115, 129, 10.1016/j.matlet.2013.10.051 Xia, 2017, Enhanced piezoelectric performance and orange-red emission of Sm3+ doped (Na1/2Bi1/2)TiO3 based lead-free ceramics, Ceram Int, 43, 376, 10.1016/j.ceramint.2016.09.168 Ma, 2020, Enhanced photoluminescence and ferro/piezoelectric performance in piezo-luminescent materials with outstanding water resistance and thermal stability, Dalton Trans, 49, 5581, 10.1039/D0DT00577K Ikegami, 1964, Raman Spectrum of BaTiO3, J Phys Soc Jpn, 19, 46, 10.1143/JPSJ.19.46 Luo, 2013, Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 thin films, Appl Phys Lett, 103, 10.1063/1.4821918 Wu, 2013, Upconversion fluorescence studies of sol–gel-derived Er-doped KNN, J Alloy Compd, 580, 88, 10.1016/j.jallcom.2013.05.096 Said, 2004, Raman spectroscopy study of the Na0.5Bi0.5TiO3-PbTiO3 system, Mater Lett, 58, 1405, 10.1016/j.matlet.2003.09.036 Lun, 2019, Luminescence and electrical properties of Eu-modified Bi0.5Na0.5TiO3 multifunctional ceramics, J Am Ceram Soc, 102, 5243, 10.1111/jace.16394 Sommerdijk, 1974, Two photon luminescence with ultraviolet excitation of trivalent praseodymium, J Lumin, 8, 341, 10.1016/0022-2313(74)90006-4 Piper, 1974, Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light, J Lumin, 8, 344, 10.1016/0022-2313(74)90007-6 Kymen, 2005, Photoluminescence Properties of Pr-Doped (Ca, Sr, Ba)TiO3, Chem Mater, 17, 3200, 10.1021/cm0403715 Ryu, 2008, Novel efficient phosphors on the base of Mg and Zn co-doped SrTiO3:Pr3+, Acta Mater, 56, 358, 10.1016/j.actamat.2007.09.041 Boutinaud, 2005, UV-to-red relaxation pathways in CaTiO3: Pr3+, J Lumin, 111, 69, 10.1016/j.jlumin.2004.06.006 Boutinaud, 2006, Luminescence properties of Pr3+ in titanates and vanadates: Towards a criterion to predict 3P0 emission quenching, Chem Phys Lett, 418, 185, 10.1016/j.cplett.2005.10.120 Mahlik, 2009, High pressure evolution of YVO4:Pr3+ luminescence, J Phys Cond Matter Instit Phys J, 21 Boutinaud, 2012, Luminescence properties of K1/2Bi1/2TiO3: Pr3+ and Na1/2Bi1/2TiO3: Pr3+, J Phys: Condens Matter, 24 Judd, 1962, Optical Intensities of Rare-Earth Ions, Phys Rev, 127, 750, 10.1103/PhysRev.127.750 Ofelt, 1962, Intensities of crystal spectra of rare-earth ions, J Chem Phys, 37, 511, 10.1063/1.1701366 Zhou, 2012, Improved Electrical Properties and Strong Red Emission of Pr3+-Doped xK0.5Bi0.5TiO3-(1–x)Na0.5Bi0.5TiO3 Lead-Free Ferroelectric Thin Films, J Am Ceram Soc, 95, 483, 10.1111/j.1551-2916.2011.05028.x Du, 2013, Photoluminescence and piezoelectric properties of Pr-doped NBT–xBZT ceramics: Sensitive to structure transition, J Alloy Compd, 559, 92, 10.1016/j.jallcom.2013.01.096 Du, 2013, Electrical and luminescence properties of Er-doped Bi0.5Na0.5TiO3 ceramics, Mater Sci Eng, B, 178, 1219, 10.1016/j.mseb.2013.08.007 Hu, 2014, Photoluminescence and Temperature Dependent Electrical Properties of Er-Doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 Ceramics, J Am Ceram Soc, 97, 3877, 10.1111/jace.13217 Li, 2018, Tunable Luminescence Contrast in Photochromic Ceramics (1–x)Na0.5Bi0.5TiO3-xNa0.5K0.5NbO3: 0.002Er by an Electric Field Poling, ACS Appl Mater Interfaces, 10, 41525, 10.1021/acsami.8b15784 Li, 2018, The upconversion luminescence modulation and its enhancement in Er3+-doped Na0.5Bi0.5TiO3 based on photochromic reaction, J Am Ceram Soc, 101, 5640, 10.1111/jace.15879 Dunce, 2018, The role of disorder on Er3+ luminescence in Na1/2Bi1/2TiO3, J Alloy Compd, 762, 326, 10.1016/j.jallcom.2018.05.246 Kandula, 2018, Correlation between structural, ferroelectric and luminescence properties through compositional dependence of Nd3+ ion in lead free Na0.5Bi0.5TiO3, J Alloy Compd, 732, 233, 10.1016/j.jallcom.2017.10.186 Du, 2014, Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application, J Appl Phys, 116, 10.1063/1.4886575 Liu, 2015, Green and Red Up-Conversion Luminescence of Er3+/Yb3+ Co-Doped 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 Ceramics, Ferroelectrics, 488, 45, 10.1080/00150193.2015.1072018 Shi, 2018, Photoluminescence performance of Er/Yb co-doped NBT ceramics prepared via hydrothermal method, J Phys Chem Solids, 121, 228, 10.1016/j.jpcs.2018.05.031 Liu, 2016, Up-conversion luminescence and electric properties of Tm3+/Yb3+ co-doped (0.94Na0.5Bi0.5TiO3–0.06BaTiO3) ceramics, J Mater Sci: Mater Electron, 27, 7274 Wu, 2016, Tunable photoluminescence properties of Pr3+/Er3+-doped 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 low-temperature sintered multifunctional ceramics, Ceram Int, 42, 9899, 10.1016/j.ceramint.2016.03.089 Liu, 2016, Effect of the Yb3+ Concentration in Up-Conversion and Electrical Properties of Ho3+/Yb3+ Co-doped (0.94Na0.5Bi0.5TiO3-0.06BaTiO3) Ceramics, J Electron Mater, 45, 3473, 10.1007/s11664-016-4483-8 Kandula, 2017, Enhancement in electrical and optical properties by substitution of lanthanides (Nd3+ and Eu3+) in lead free Na0.5Bi0.5TiO3 ceramics, Ferroelectrics, 518, 23, 10.1080/00150193.2017.1360117 Huang, 2019, The color-tunable up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Tm3+ ceramics and its temperature sensing application based on the intrinsic defects, J Alloy Compd, 797, 659, 10.1016/j.jallcom.2019.05.168 Sun, 2019, Electric field-responsive photoluminescence color switching and reversible properties via Tb/Eu co-doped ergodic relaxor ferroelectrics, Phys Chem Chem Phys, 21, 7567, 10.1039/C9CP00324J