Phase stability of MoTe2 obtained by tellurization of sputtered molybdenum oxide: The influence of the thickness and the precursor crystallinity
Tài liệu tham khảo
Deng, 2021, MoTe2: semiconductor or semimetal?, ACS Nano, 15, 12465, 10.1021/acsnano.1c01816
WTe2 Synthesis by Tellurization of W Precursors Using Isothermal Close Space Vapor Transport Annealing – de Melo – 2018 – Physica Status Solidi (a) – Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/10.1002/pssa.201800425 (accessed 11.06.22).
de Melo, 2018, Chemically driven isothermal closed space vapor transport of MoO2: thin films, flakes and in situ tellurization, J. Mater. Chem. C, 6, 6799, 10.1039/C8TC01685B
Voiry, 2015, Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev., 44, 2702, 10.1039/C5CS00151J
Keum, 2015, Bandgap opening in few-layered monoclinic MoTe2, Nat. Phys., 11, 482, 10.1038/nphys3314
Sánchez-Montejo, 2017, Phase stability in MoTe2 prepared by low temperature Mo tellurization using close space isothermal Te annealing, Mater. Chem. Phys., 198, 317, 10.1016/j.matchemphys.2017.06.031
Zhou, 2016, Synthesis of high-quality large-area homogenous 1T′ MoTe2 from chemical vapor deposition, Adv. Mater., 28, 9526, 10.1002/adma.201602687
In-Plane 2H-1T′ MoTe2 Homojunctions Synthesized by Flux-Controlled Phase Engineering – Yoo – 2017 – Advanced Materials – Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201605461 (accessed 11.06.22).
Empante, 2017, Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: tunable properties of MoTe2 films, ACS Nano, 11, 900, 10.1021/acsnano.6b07499
Yang, 2017, Tellurization velocity-dependent metallic–semiconducting–metallic phase evolution in chemical vapor deposition growth of large-area, few-layer MoTe2, ACS Nano, 11, 1964, 10.1021/acsnano.6b08109
Zhou, 2015, Large-area synthesis of high-quality uniform few-layer MoTe2, J. Am. Chem. Soc., 137, 11892, 10.1021/jacs.5b07452
Li, 2022, Controllable growth of large-area 1T′, 2H ultrathin MoTe2 films, and 1T′–2H in-plane homojunction, J. Appl. Phys., 131, 10.1063/5.0087432
Fraser, 2020, Selective phase growth and precise-layer control in MoTe2, Commun. Mater., 1, 1, 10.1038/s43246-020-00048-4
Hynek, 2021, cm2-Scale synthesis of MoTe2 thin films with large grains and layer control, ACS Nano, 15, 410, 10.1021/acsnano.0c08069
Domínguez, 2018, Molybdenum oxide 2-D flakes: role of thickness and annealing treatment on the optoelectronic properties of the material, J. Mater. Sci., 53, 6147, 10.1007/s10853-017-1975-8
Fernandes Cauduro, 2015, Tuning the optoelectronic properties of amorphous MoOx films by reactive sputtering, Appl. Phys. Lett., 106, 10.1063/1.4921367
Ruppert, 2014, Optical properties and band gap of single- and few-layer MoTe2 crystals, Nano Lett., 14, 6231, 10.1021/nl502557g
Froehlicher, 2015, Unified description of the optical phonon modes in N-layer MoTe2, Nano Lett., 15, 6481, 10.1021/acs.nanolett.5b02683
Park, 2015, Phase-engineered synthesis of centimeter-scale 1T′- and 2H-molybdenum ditelluride thin films, ACS Nano, 9, 6548, 10.1021/acsnano.5b02511
Morales-Luna, 2019, Effect of a CdSe layer on the thermo- and photochromic properties of MoO3 thin films deposited by physical vapor deposition, J. Phys. Chem. C, 123, 17083, 10.1021/acs.jpcc.9b02895
Ponce-Mosso, 2020, Enhanced photocatalytic activity of amorphous MoO3 thin films deposited by rf reactive magnetron sputtering, Catal. Today, 349, 150, 10.1016/j.cattod.2018.04.065
Hatayama, 2022, Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: amorphous, 1T′ and 2H phases, J. Mater. Chem. C, 10, 10627, 10.1039/D2TC01281B
Brown, 1966, The crystal structures of WTe2 and high-temperature MoTe2, Acta Crystallogr., 20, 268, 10.1107/S0365110X66000513