Phase relations in the peridotite–carbonate–chloride system at 7.0–16.5 GPa and the role of chlorides in the origin of kimberlite and diamond
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akaishi, 1990, Synthesis of diamond from graphite–carbonate system under very high temperature and pressure, J. Cryst. Growth, 104, 578, 10.1016/0022-0248(90)90159-I
Akaogi, 1989, Olivine–modified spinel–spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application, J. Geophys. Res.,, 94, 15671, 10.1029/JB094iB11p15671
Akella, 1969, Melting of sodium chloride at pressures to 65 kbar, Phys. Rev., 185, 1135, 10.1103/PhysRev.185.1135
Becker, 2000, Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones, Chem. Geol., 163, 65, 10.1016/S0009-2541(99)00071-6
Bertrand, 1985, The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system?, Earth Planet. Sci. Lett., 76, 109, 10.1016/0012-821X(85)90152-9
Boehler, 1996, High-pressure melting curves of alkali halides, Phys. Rev. B,, 53, 556, 10.1103/PhysRevB.53.556
Boehler, 1997, Melting of LiF and NaCl to 1 Mbar: systematics of ionic solids at extreme conditions, Phys. Rev. Lett., 78, 4589, 10.1103/PhysRevLett.78.4589
Brey, 2008, Experimental melting of carbonated peridotite at 6–10 GPa, J. Petrol.,, 49, 797, 10.1093/petrology/egn002
Burgess, 2002, Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds, Earth Planet. Sci. Lett., 197, 193, 10.1016/S0012-821X(02)00480-6
Canil, 1990, Phase relations in peridotite + CO2 systems to 12 GPa: implications for the origin of Kimberlite and carbonate stability in the Earth's upper mantle, J. Geophys. Res.,, 95, 15805, 10.1029/JB095iB10p15805
Chen, 1992, High-K and high-Cl inclusions in diamond and mantle metasomatism, Acta Mineral. Sin., 12, 193
Dalton, 1998, Carbonatititic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa, Contrib. Mineral. Petrol.,, 131, 123, 10.1007/s004100050383
Dalton, 1998, The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa, J. Petrol.,, 39, 1953
Dasgupta, 2006, Deep melting in the Earth's upper mantle caused by CO2, Nature,, 440, 659, 10.1038/nature04612
Dasgupta, 2007, Effect of variable carbonate concentration on the solidus of mantle peridotite, Am. Mineral.,, 92, 370, 10.2138/am.2007.2201
Dasgupta, 2007, Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts, J. Petrol., 48, 2093, 10.1093/petrology/egm053
Dasgupta, 2007, Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges, Geology, 35, 135, 10.1130/G22856A.1
Dasgupta, 2006, Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite+CO2 and genesis of silica-undersaturated ocean island lavas, J. Petrol., 47, 647, 10.1093/petrology/egi088
Dasgupta, 2004, Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions, Earth Planet. Sci. Lett.,, 227, 73, 10.1016/j.epsl.2004.08.004
Dawson, 1998, Peralkaline nephelinite–natrocarbonatite relationships at Oldoinyo Lengai, Tanzania, J. Petrol., 39, 2077, 10.1093/petroj/39.11-12.2077
De Corte, 1998, Evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav massif, northern Kazakhstan, Geochim. et Cosmochim. Acta, 62, 3765, 10.1016/S0016-7037(98)00266-X
Dobrzhinetskaya, 2003, Crystallization environment of Kazakhstan microdiamond: evidence from nanometric inclusions and mineral associations, J. Metamorph. Geol., 21, 425, 10.1046/j.1525-1314.2003.00452.x
Fallon, 1989, The solidus of carbonated, fertile peridotite, Earth Planet. Sci. Lett.,, 94, 364, 10.1016/0012-821X(89)90153-2
Fei, 2007, Toward an internally consistent pressure scale, Proc. Natl. Acad. Sci. USA,, 104, 9182, 10.1073/pnas.0609013104
Foley, 1999, Melt compositions from ultramafic vein assemblages in the lithospheric mantle: a comparison of cratonic and noncratonic settings, vol. 1, 238
Genge, 2001, Salt-bearing fumarole deposits in the summit crater of Oldoinyo Lengai, northern Tanzania: interactions between natrocarbonatite lava and meteoric water, J. Volcanol. Geotherm. Res., 106, 111, 10.1016/S0377-0273(00)00251-1
Girnis, 2005, Transition from kimberlite to carbonatite melt under mantle parameters: an experimental study, Petrology, 13, 1
Gittins, 1980, Alkalic carbonatite magmas: Oldoinyo Lengai and its wider applicability, Lithos, 13, 213, 10.1016/0024-4937(80)90021-3
Golovin, 2007, Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya–East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallization stages, Petrology, 15, 168, 10.1134/S086959110702004X
Golovin, 2003, Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya–East Pipe, Yakutia, Doklady Earth Sci., 388, 93
Hammouda, 2003, High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle, Earth Planet. Sci. Lett., 214, 357, 10.1016/S0012-821X(03)00361-3
Hirschmann, 2000, Mantle solidus: experimental constraints and the effects of peridotite composition, Geochem. Geophys. Geosyst., 1, 10.1029/2000GC000070
Hwang, 2006, Nanometer-size P/K-rich silica glass (former melt) inclusions in microdiamond from the gneisses of Kokchetav and Erzgebirge massifs: diversified characteristics of the formation media of metamorphic microdiamond in UHP rocks due to host-rock buffering, Earth Planet. Sci. Lett., 243, 94, 10.1016/j.epsl.2005.12.015
Hwang, 2005, Crust-derived potassic fluid in metamorphic microdiamond, Earth Planet. Sci. Lett., 231, 295, 10.1016/j.epsl.2005.01.002
Inoue, 2006, The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction, Phys. Chem. Minerals, 33, 106, 10.1007/s00269-005-0053-y
Ionov, 1997, Volatile-bearing minerals and lithophile trace elements in the upper mantle, Chem. Geol., 141, 153, 10.1016/S0009-2541(97)00061-2
Izraeli, 2001, Brine inclusions in diamonds: a new upper mantle fluid, Earth Planet. Sci. Lett., 187, 323, 10.1016/S0012-821X(01)00291-6
Izraeli, 2004, Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa, Geochim. Cosmochim. Acta, 68, 2561, 10.1016/j.gca.2003.09.005
Kamenetsky, 2007, Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya–East kimberlite, Siberia), Chem. Geol., 237, 384, 10.1016/j.chemgeo.2006.07.010
Kamenetsky, 2004, Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle, Geology, 32, 845, 10.1130/G20821.1
Kamenetsky, 2007, Carbonate-chloride enrichment in fresh kimberlites of the Udachnaya–East pipe, Siberia: a clue to physical properties of kimberlite magmas?, Geophys. Res. Lett., 34, L09316, 10.1029/2007GL029389
Katsura, 1990, Melting and subsolidus relations in the MgSiO3–MgCO3 system at high pressures: implications to evolution of the Earth’s atmosphere, Earth Planet. Sci. Lett., 99, 110, 10.1016/0012-821X(90)90074-8
Katsura, 2004, Olivine–wadsleyite transition in the system (Mg,Fe)2SiO4, J. Geophys. Res., 109, B02209, 10.1029/2003JB002438
Keller, 1990, Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988, Bull. Volcanol., 52, 629, 10.1007/BF00301213
Keller, 1995, The trace element composition and petrogenesis of natrocarbonatites, vol. 4, 70
Kennedy, 1976, The equilibrium boundary between graphite and diamond, J. Geophys. Res., 81, 2467, 10.1029/JB081i014p02467
Kent, 2002, Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluids, Earth Planet. Sci. Lett., 202, 361, 10.1016/S0012-821X(02)00786-0
Klein-BenDavid, 2004, Mantle fluid evolution – a tale of one diamond, Lithos, 77, 243, 10.1016/j.lithos.2004.04.003
Klein-BenDavid, 2006, TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-bearing fluids, Am. Mineral., 91, 353, 10.2138/am.2006.1864
Klein-BenDavid, 2007, Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids, Geochim. Cosmochim. Acta, 71, 723, 10.1016/j.gca.2006.10.008
Lassiter, 2002, Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brineinduced melting of oceanic crust, Earth Planet. Sci. Lett., 202, 525, 10.1016/S0012-821X(02)00826-9
Litasov, 2002, Phase relations and melt compositions in CMAS-pyrolite-H2O system up to 25 GPa, Phys. Earth Planet. Inter.,, 134, 105, 10.1016/S0031-9201(02)00152-8
Litasov, 2008, Solidus of carbonated peridotite and basalt to 33 GPa with implication to origin of kimberlite- and carbonatite-like melts in the deep mantle
Litasov, 2003, Hydrous solidus of CMAS-pyrolite and melting of mantle plumes at the bottom of the upper mantle, Geophys. Res. Lett., 30, 2143, 10.1029/2003GL018318
Litasov, 2007, Effect of water on the phase relations in the Earth's mantle and deep water cycle, vol. 421, 115
Litvin, 2003, Alkaline-chloride components in processes of diamond growth in the mantle and high-pressure experimental conditions, Doklady Earth Sci., 389A, 388
Litvin, 2000, Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570 °C, Dokl. Earth Sci., 372, 808
Litvin, 1997, Experimental crystallization of diamond and graphite from alkali-carbonate melts at 7–11 GPa, Dokl. Earth Sci., 355, 669
Luth, 2003, Mantle volatiles – distribution and consequences, vol. 2, 319
Lyubetskaya, 2007, Chemical composition of Earth's primitive mantle and its variance: 1. Method and results, J. Geophys. Res., 112, B03211
Maas, 2005, Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology,, 33, 549
McDonough, 2003, Compositional model for the Earth's core, vol. 1, 547
McKenzie, 1988, The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625, 10.1093/petrology/29.3.625
Michael, 1998, Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts, J. Geophys. Res., 103, 18325, 10.1029/98JB00791
Moore, 1998, The transition from carbonate to silicate melts in the CaO–MgO–SiO2–CO2 system, J. Petrol., 39, 1943
Morishima, 1994, The phase boundary between α and β-Mg2SiO4 determined by in situ X-ray observation, Science,, 265, 1202, 10.1126/science.265.5176.1202
Navon, 2003, Fluid inclusions in diamonds – the carbonatitic connection
O’Hara, 1968, The bearing of phase equilibria studies in synthetic and natural system on the origin and evolution of basic and ultrabasic rocks, Earth Sci. Rev., 4, 69, 10.1016/0012-8252(68)90147-5
Ottolini, 2008, SIMS analysis of chlorine in metasomatised upper-mantle rocks, Microchim. Acta, 161, 329, 10.1007/s00604-007-0850-8
Palme, 2003, Solar system abundances of the elements, vol. 1, 41
Palme, 2003, Cosmochemical estimates of mantle composition, vol. 2, 1
Palyanov, 2007, The role of mantle ultrapotassic fluids in diamond formation, Proc. Nat. Acad. Sci., 104, 9122, 10.1073/pnas.0608134104
Palyanov, 2005, Conditions of diamond formation through carbonate–silicate interaction, Eur. J. Mineral., 17, 207, 10.1127/0935-1221/2005/0017-0207
Palyanov, 2002, Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study, Lithos, 60, 145, 10.1016/S0024-4937(01)00079-2
Perchuk, 2002, Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review, Lithos, 60, 89, 10.1016/S0024-4937(01)00072-X
Philippot, 1998, Chlorine cycling during subduction of altered oceanic crust, Earth Planet. Sci. Lett., 161, 33, 10.1016/S0012-821X(98)00134-4
Rege, 2005, Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry, J. Anal. Atomic Spectr., 20, 601, 10.1039/b501374g
Safonov, 2007, Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle, Earth Planet. Sci. lett., 253, 112, 10.1016/j.epsl.2006.10.020
Schrauder, 1994, Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana, Geochim. Cosmochim. Acta, 58, 761, 10.1016/0016-7037(94)90504-5
Schrauder, 1996, Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana, Geochim. Cosmochim. Acta, 52, 761
Sharp, 2007, Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites, Nature, 446, 1062, 10.1038/nature05748
Shiryaev, 2005, Chemical, optical, and isotopic investigations of fibrous diamonds from Brazil, Russ. Geol. Geophys., 46, 1207
Smith, 1981, Storage of F and Cl in the upper mantle: geochemical implications, Lithos, 14, 133, 10.1016/0024-4937(81)90050-5
Stoppa, 1997, New mineral data from the kamafugite-carbonatite association: the melilitolite from Pian di Celle, Italy, Mineral. Petrol., 61, 27, 10.1007/BF01172476
Suzuki, 2000, In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4, Geophys. Res. Lett., 27, 803, 10.1029/1999GL008425
Tomlinson, 2005, Trace element composition of submicroscopic inclusions in coated diamond: a tool for understanding diamond petrogenesis, Geochim. Cosmochim. Acta, 69, 4719, 10.1016/j.gca.2005.06.014
Tomlinson, 2004, High-pressure experimental growth of diamond using C–K2CO3–KCl as an analogue of Cl-bearing carbonate fluid, Lithos, 77, 287, 10.1016/j.lithos.2004.04.029
Tomlinson, 2006, Co-existing fluid and silicate inclusions in mantle diamond, Earth Planet. Sci. Lett., 250, 581, 10.1016/j.epsl.2006.08.005
Turner, 1990, Volatile-rich mantle fluids inferred from inclusions in diamonds and mantle xenoliths, Nature, 334, 653, 10.1038/344653a0
Vannucci, 1995, Origin of LREE-depleted amphiboles in the subcontinental mantle, Geochim. Cosmochim. Acta, 59, 1763, 10.1016/0016-7037(95)00080-J
Vukadinovic, 1993, Phase relations in the phlogopite-apatite system at 20 kbar: implications for the role of fluorine in mantle melting, Contrib. Mineral. Petrol., 114, 247, 10.1007/BF00307759
Wallace, 1988, Experimental determination of primary carbonatite magma composition, Nature, 335, 343, 10.1038/335343a0
Wang, 1998, Growth of HTHP diamonds in alkali haloids: possible effect of oxygen contamination, Diam. Relat. Mater., 7, 57, 10.1016/S0925-9635(97)00183-0
Webster, 1999, Chloride and water solubility in basalt and andesitemelts and implication formagmatic degassing, Geochim. Cosmochim. Acta, 63, 729, 10.1016/S0016-7037(99)00043-5
Webster, 2002, Experimental and modeled solubilities of chlorine in aluminosilicatemelts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Visuvius, Am. Mineral., 87, 1046, 10.2138/am-2002-8-902
Williams, 2001, Hydrogen in the deep Earth, Ann. Rev. Earth Planet. Sci., 29, 365, 10.1146/annurev.earth.29.1.365
Wyllie, 2000, Volatile components, magmas, and critical fluids in upwelling mantle, J. Petrol., 41, 1195, 10.1093/petrology/41.7.1195
Yamaoka, 2002, Formation of diamond from CaCO3 in a reduced C–O–H fluid at HP–HT, Diam. Relat. Mater., 11, 1496, 10.1016/S0925-9635(02)00053-5
Yamaoka, 2002, Crystallization of diamond from CO2 fluid at high pressure and high temperature, J. Crystal Growth, 234, 5, 10.1016/S0022-0248(01)01678-5
Yaxley, 2004, Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites, Contrib.Mineral. Petrol., 146, 606, 10.1007/s00410-003-0517-3
Zedgenizov, 2004, Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy, Mineral. Mag., 68, 61, 10.1180/0026461046810171