Phase-field modeling with the TAF-ID of incipient melting and oxygen transport in nuclear fuel during power transients
Tài liệu tham khảo
Lewis, 2012, 2.20-fission product chemistry in oxide fuels, Comprehensive Nuclear Materials, 2, 10.1016/B978-0-08-056033-5.00042-2
Guéneau, 2011, Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u–pu–o–c systems, Journal of nuclear materials, 419, 145, 10.1016/j.jnucmat.2011.07.033
Piro, 2013, Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel, Journal of Nuclear Materials, 441, 240, 10.1016/j.jnucmat.2013.05.060
Baurens, 2014, 3d thermo-chemical–mechanical simulation of power ramps with ALCYONE fuel code, Journal of Nuclear Materials, 452, 578, 10.1016/j.jnucmat.2014.06.021
Konarski, 2019, 3d simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion, Journal of Nuclear Materials, 519, 104, 10.1016/j.jnucmat.2019.03.021
Piro, 2011, Numerical verification of equilibrium thermodynamic computations in nuclear fuel performance codes, Journal of Nuclear Materials, 414, 399, 10.1016/j.jnucmat.2011.05.012
Loukusa, 2016, Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers, Journal of Nuclear Materials, 481, 101, 10.1016/j.jnucmat.2016.09.014
Sundman, 2015, The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software, Computational Materials Science, 101, 127, 10.1016/j.commatsci.2015.01.029
Sundman, 2015, Opencalphad-a free thermodynamic software, Integrating Materials and Manufacturing Innovation, 4, 1, 10.1186/s40192-014-0029-1
Simunovic, 2015, Coupling of thermochemistry solver THERMOCHIMICA with MOOSE/BISON, ORNL/TM-2015/322, ORNL, 25
Simunovic, 2020, Modeling and simulation of oxygen transport in high burnup LWR fuel, Journal of Nuclear Materials, 152194, 10.1016/j.jnucmat.2020.152194
Samuelsson, 2020, An improved method to evaluate the joint oxyde-gaine formation in (u, pu) o2 irradiated fuels using the GERMINAL v2 code coupled to calphad thermodynamic computations, EPJ Nuclear Sciences & Technologies, 6, 47, 10.1051/epjn/2020008
Introïni, 2020, Development of a robust, accurate and efficient coupling between PLEIADES/ALCYONE 2.1 fuel performance code and the opencalphad thermo-chemical solver, Nuclear Engineering and Design, 369, 110818, 10.1016/j.nucengdes.2020.110818
Cordfunke, 1993, Thermochemical data for reactor materials and fission products: The ECN database, Journal of phase equilibria, 14, 457, 10.1007/BF02671964
Hales, 2014, Verification of the BISON fuel performance code, Annals of Nuclear Energy, 71, 81, 10.1016/j.anucene.2014.03.027
I.N. Laboratory, Bison: A finite element-based nuclear fuel performance code. https://bison.inl.gov, 2020,
Besmann, 2016, Application of thermochemical modeling to assessment/evaluation of nuclear fuel behavior, Calphad, 55, 47, 10.1016/j.calphad.2016.04.004
Bale, 2016, Reprint of: Factsage thermochemical software and databases, 2010-2016, Calphad, 55, 1, 10.1016/j.calphad.2016.07.004
Moelans, 2008, An introduction to phase-field modeling of microstructure evolution, Calphad, 32, 268, 10.1016/j.calphad.2007.11.003
Jacqmin, 1999, Calculation of two-phase navier–stokes flows using phase-field modeling, Journal of Computational Physics, 155, 96, 10.1006/jcph.1999.6332
Boyer, 2006, Study of a three component cahn-hilliard flow model, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 40, 653, 10.1051/m2an:2006028
Boyer, 2010, Cahn–hilliard/navier–stokes model for the simulation of three-phase flows, Transport in Porous Media, 82, 463, 10.1007/s11242-009-9408-z
Introïni, 2010
Lu, 2020, An efficient and robust staggered algorithm applied to the quasi-static description of brittle fracture by a phase-field approach, Computer Methods in Applied Mechanics and Engineering, 370, 113, 10.1016/j.cma.2020.113218
Tiaden, 1998, The multiphase-field model with an integrated concept for modelling solute diffusion, Physica D: Nonlinear Phenomena, 115, 73, 10.1016/S0167-2789(97)00226-1
Cardon, 2016, Modelling of liquid phase segregation in the uranium–oxygen binary system, Calphad, 52, 47, 10.1016/j.calphad.2015.10.005
Wheeler, 1992, Phase-field model for isothermal phase transitions in binary alloys, Physical Review A, 45, 7424, 10.1103/PhysRevA.45.7424
Kim, 1999, Phase-field model for binary alloys, Physical review e, 60, 7186, 10.1103/PhysRevE.60.7186
Tiwari, 2019
Hirschhorn, 2019, A study of constituent redistribution in u–zr fuels using quantitative phase-field modeling and sensitivity analysis, Journal of Nuclear Materials, 523, 143, 10.1016/j.jnucmat.2019.05.053
Hirschhorn, 2020, Reexamination of a u-zr diffusion couple experiment using quantitative phase-field modeling and sensitivity analysis, Journal of Nuclear Materials, 529, 151, 10.1016/j.jnucmat.2019.151929
Welland, 2009
Welland, 2009, Computer simulations of non-congruent melting of hyperstoichiometric uranium dioxide, Journal of nuclear materials, 385, 358, 10.1016/j.jnucmat.2008.12.023
Welland, 2011, Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel, Journal of nuclear materials, 412, 342, 10.1016/j.jnucmat.2011.03.036
Moore, 2013, Diffusion model of the non-stoichiometric uranium dioxide, Journal of Solid State Chemistry, 203, 145, 10.1016/j.jssc.2013.04.006
Moore, 2017, Oxygen diffusion model of the mixed (u, pu) o2±x: Assessment and application, Journal of Nuclear Materials, 485, 216, 10.1016/j.jnucmat.2016.12.026
TAF-ID, https://www.oecd-nea.org/science/taf-id/,
Geiger, 2019, Modelling nuclear fuel behaviour with TAF-ID: Calculations on the VERDON-1 experiment, representative of a nuclear severe accident, Journal of Nuclear Materials, 522, 294, 10.1016/j.jnucmat.2019.05.027
C. Guéneau, N. Dupin, L. Kjellqvist, E. Geiger, M. Kurata, S. Gossé, E. Corcoran, A. Quaini, R. Hania, A.L. Smith, et al., Taf-id: An international thermodynamic database for nuclear fuels applications, Calphad 72102212.
Introïni, 2019, Pleiades alcyone 3.5d simulation of a power ramp including opencalphad fuel thermochemistry with taf-id
Lukas, 2007
Hillert, 1985, A two-sublattice model for molten solutions with different tendency for ionization, Metallurgical Transactions A, 16, 261, 10.1007/BF02815307
Coutinho, 2020, Combining thermodynamics with tensor completion techniques to enable multicomponent microstructure prediction, npj Computational Materials, 6, 1, 10.1038/s41524-019-0268-y
De Groot, 2013
1979, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27, 1085, 10.1016/0001-6160(79)90196-2
Welland, 2014, Multicomponent phase-field model for extremely large partition coefficients, Physical Review E, 89, 012409, 10.1103/PhysRevE.89.012409
Onsager, 1931, Reciprocal relations in irreversible processes. i, Physical review, 37, 405, 10.1103/PhysRev.37.405
Welland, 2020, 2.08 - matter transport in fast reactor fuels, 200
Howard, 1964, Matter transport in solids, Reports on Progress in Physics, 27, 161, 10.1088/0034-4885/27/1/305
de Groot, 1947, Sur la thermodynamique de quelques processus irréversibles. II., diffusion thermique et phénomènes connexes
Dougherty, 1955, A theory of thermal diffusion in liquids, The Journal of Chemical Physics, 23, 295, 10.1063/1.1741957
Introïni, 2009, Cahn-hilliard modelling for a two-phase compositional system
Takoukam-Takoundjou, 2020, Optimization of a new interatomic potential to investigate the thermodynamic properties of hypo-stoichiometric mixed oxide fuel u1’ypuyo2’x, Journal of Physics Condensed Matter, 32, 10.1088/1361-648X/abace3
Takoukam-Takoundjou, 2020, Study of thermodynamic properties of u1-ypuyo2 MOX fuel using classical molecular monte carlo simulations, Journal of Nuclear Materials, 534
Bathellier, 2021, A new heat capacity law for UO2, puo2 and (u,pu)o2 derived from molecular dynamics simulations and useable in fuel performance codes, Journal of Nuclear Materials, 549, 152877, 10.1016/j.jnucmat.2021.152877
Alefeld, 1995, Algorithm 748: enclosing zeros of continuous functions, ACM Transactions on Mathematical Software (TOMS), 21, 327, 10.1145/210089.210111
Michel, 2021, Chapter 9 - two fuel performance codes of the PLEIADES platform: ALCYONE and GERMINAL, 207
Konarski, 2019
Plapp, 2011, Unified derivation of phase-field models for alloy solidification from a grand-potential functional, Physical Review E, 84, 031601, 10.1103/PhysRevE.84.031601
Welland, 2017, Linearization-based method for solving a multicomponent diffusion phase-field model with arbitrary solution thermodynamics, Physical Review E, 95, 063312, 10.1103/PhysRevE.95.063312
Aagesen, 2018, Grand-potential-based phase-field model for multiple phases, grains, and chemical components, Physical Review E, 98, 023309, 10.1103/PhysRevE.98.023309