Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies

Theoretical and Applied Fracture Mechanics - Tập 103 - Trang 102252 - 2019
Jianguang Fang1,2, Chengqing Wu2, Timon Rabczuk1, Chi Wu3, Conggan Ma4, Guangyong Sun3, Qing Li3
1Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar, Germany
2School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
3School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
4School of Automotive Engineering, Harbin Institute of Technology, Weihai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Peng, 2012, 1524

Zhou, 2004, Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency, Int. J. Numer. Meth. Eng., 59, 1, 10.1002/nme.857

Azevedo, 2006, Hybrid discrete element/finite element method for fracture analysis, Comput. Methods Appl. Mech. Eng., 195, 4579, 10.1016/j.cma.2005.10.005

Mueller, 2002, On material forces and finite element discretizations, Comput. Mech., 29, 52, 10.1007/s00466-002-0322-2

Miehe, 2007, A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization, Int. J. Fract., 145, 245, 10.1007/s10704-007-9078-1

Gürses, 2009, A computational framework of three-dimensional configurational-force-driven brittle crack propagation, Comput. Methods Appl. Mech. Eng., 198, 1413, 10.1016/j.cma.2008.12.028

Moës, 1999, A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng., 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

Moës, 2002, Non-planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model, Int. J. Numer. Meth. Eng., 53, 2549, 10.1002/nme.429

Rabczuk, 2004, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. Meth. Eng., 61, 2316, 10.1002/nme.1151

Rabczuk, 2007, A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng., 196, 2777, 10.1016/j.cma.2006.06.020

Rabczuk, 2010, A simple and robust three-dimensional cracking-particle method without enrichment, Comput. Methods Appl. Mech. Eng., 199, 2437, 10.1016/j.cma.2010.03.031

Francfort, 1998, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319, 10.1016/S0022-5096(98)00034-9

Bourdin, 2000, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797, 10.1016/S0022-5096(99)00028-9

Miehe, 2010, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Int. J. Numer. Meth. Eng., 83, 1273, 10.1002/nme.2861

Borden, 2012, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217, 77, 10.1016/j.cma.2012.01.008

Hofacker, 2012, Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation, Int. J. Fract., 178, 113, 10.1007/s10704-012-9753-8

Karma, 2001, Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., 87, 045501, 10.1103/PhysRevLett.87.045501

Henry, 2004, Dynamic instabilities of fracture under biaxial strain using a phase field model, Phys. Rev. Lett., 93, 105504, 10.1103/PhysRevLett.93.105504

Miehe, 2010, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199, 2765, 10.1016/j.cma.2010.04.011

Kuhn, 2010, A continuum phase field model for fracture, Eng. Fract. Mech., 77, 3625, 10.1016/j.engfracmech.2010.08.009

Miehe, 2015, Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Eng., 294, 449, 10.1016/j.cma.2014.11.016

Zhou, 2018, Phase field modelling of crack propagation, branching and coalescence in rocks, Theor. Appl. Fract. Mech., 96, 174, 10.1016/j.tafmec.2018.04.011

Areias, 2016, Phase-field analysis of finite-strain plates and shells including element subdivision, Comput. Methods Appl. Mech. Eng., 312, 322, 10.1016/j.cma.2016.01.020

Amiri, 2014, Phase-field modeling of fracture in linear thin shells, Theor. Appl. Fract. Mech., 69, 102, 10.1016/j.tafmec.2013.12.002

Xia, 2018, Topology optimization for maximizing the fracture resistance of quasi-brittle composites, Comput. Methods Appl. Mech. Eng., 332, 234, 10.1016/j.cma.2017.12.021

Wu, 2019, Level-set topology optimization for maximizing fracture resistance of brittle materials using phase field fracture model, Comput. Methods Appl. Mech. Eng.

Msekh, 2015, Abaqus implementation of phase-field model for brittle fracture, Comput. Mater. Sci., 96, 472, 10.1016/j.commatsci.2014.05.071

Molnár, 2017, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., 130, 27, 10.1016/j.finel.2017.03.002

Liu, 2016, Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., 121, 35, 10.1016/j.commatsci.2016.04.009

Zhou, 2018, Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies, Adv. Eng. Softw., 122, 31, 10.1016/j.advengsoft.2018.03.012

Seleš, 2019, A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., 205, 370, 10.1016/j.engfracmech.2018.09.027

Pramono, 1989, Fracture energy-based plasticity formulation of plain concrete, J. Eng. Mech., 115, 1183, 10.1061/(ASCE)0733-9399(1989)115:6(1183)

Chen, 1994

Miehe, 2015, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids, Comput. Methods Appl. Mech. Eng., 294, 486, 10.1016/j.cma.2014.11.017

Hofacker, 2012, A phase field model for ductile to brittle failure mode transition, PAMM., 12, 173, 10.1002/pamm.201210077

Ulmer, 2013, Phase field modeling of brittle and ductile fracture, PAMM., 13, 533, 10.1002/pamm.201310258

Duda, 2015, A phase-field/gradient damage model for brittle fracture in elastic–plastic solids, Int. J. Plast., 65, 269, 10.1016/j.ijplas.2014.09.005

Ambati, 2015, Phase-field modeling of ductile fracture, Comput. Mech., 55, 1017, 10.1007/s00466-015-1151-4

Borden, 2016, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Eng., 312, 130, 10.1016/j.cma.2016.09.005

Alessi, 2017, Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: one-dimensional examples, Int. J. Mech. Sci.

Alessi, 2018, Comparison of phase-field models of fracture coupled with plasticity, 1

Rodriguez, 2018, A variational approach to the phase field modeling of brittle and ductile fracture, Int. J. Mech. Sci., 10.1016/j.ijmecsci.2018.05.009

Fang, 2019, Phase field fracture in elasto-plastic solids: Variational formulation for multi-surface plasticity and effects of plastic yield surfaces and hardening, Int. J. Mech. Sci., 156, 382, 10.1016/j.ijmecsci.2019.03.012

Lee, 1998, Plastic-damage model for cyclic loading of concrete structures, J. Eng. Mech., 124, 892, 10.1061/(ASCE)0733-9399(1998)124:8(892)

Wu, 2006, An energy release rate-based plastic-damage model for concrete, Int. J. Solids Struct., 43, 583, 10.1016/j.ijsolstr.2005.05.038

Voyiadjis, 2008, Anisotropic damage–plasticity model for concrete, Int. J. Plast., 24, 1946, 10.1016/j.ijplas.2008.04.002

Grassl, 2013, CDPM2: A damage-plasticity approach to modelling the failure of concrete, Int. J. Solids Struct., 50, 3805, 10.1016/j.ijsolstr.2013.07.008

Cao, 2014, Numerical simulation of 3D ductile cracks formation using recent improved Lode-dependent plasticity and damage models combined with remeshing, Int. J. Solids Struct., 51, 2370, 10.1016/j.ijsolstr.2014.03.005