Phase diagrams and thermochemical modeling of salt lake brine systems. V. Li+-Na+-K+-Mg2+-Ca2+-SO42-H2O system

Chemical Thermodynamics and Thermal Analysis - Tập 3 - Trang 100008 - 2021
Dongdong Li1,2, Dewen Zeng1,3, Dandan Gao1
1Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, PR China
2Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, PR China
3College of Chemistry of Chemical Engineering, Central South University, Changsha 410083, PR China

Tài liệu tham khảo

Song, 2001, Thermodynamics and phase diagram of the salt lake brine system at 25 ∘ C i. Li+, K+, Mg2+/Cl−, SO42− – H2O system, Calphad, 25, 329, 10.1016/S0364-5916(01)00053-0 Song, 2003, Thermodynamics and phase diagram of the salt lake brine system at 298.15 k v. Model for the system Li+, Na+, K+, Mg2+/Cl−, SO42− – H2O and its applications, Calphad, 27, 343, 10.1016/j.calphad.2004.02.001 Kwok, 2008, Thermodynamics of salt lake system: representation, experiments, and visualization, AIChE J., 54, 706, 10.1002/aic.11421 1991, Activity Coefficients in Electrolyte Solutions Thomsen, 1996, Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems, Chem. Eng. Sci., 51, 3675, 10.1016/0009-2509(95)00418-1 Voigt, 2015, What we know and still not know about oceanic salts, Pure Appl. Chem., 87, 1099, 10.1515/pac-2015-0606 Lassin, 2015, A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 ∘c, Am. J. Sci., 315, 204, 10.2475/03.2015.02 Lassin, 2018, Solution properties and salt solution equilibria in the H-Li-Na-K-Ca-Mg-Cl-H2O system at 25 ∘C: a new thermodynamic model based on Pitzer’s equations, Calphad, 61, 126, 10.1016/j.calphad.2018.03.005 Lach, 2017, Experimental data and modeling of solution density and heat capacity in the Na-K-Ca-Mg-Cl-H2O system up to 353.15 K and 5 mol·kg−1 ionic strength, J. Chem. Eng. Data, 62, 3561, 10.1021/acs.jced.7b00553 Steiger, 2011, Decomposition reactions of magnesium sulfate hydrates and phase equilibria in the MgSO4-H2O and Na+-Mg2+-Cl−-SO42−-H2O systems with implications for mars, Geochim. Cosmochim. Acta, 75, 3600, 10.1016/j.gca.2011.03.038 Marion, 2010, FREZCHEM: a geochemical model for cold aqueous solutions, Comput. Geosci., 36, 10, 10.1016/j.cageo.2009.06.004 Rowland, 2015, Thermodynamically-robust Pitzer equations for volumetric properties of electrolyte solutions, Talanta, 144, 90, 10.1016/j.talanta.2015.05.050 Rowland, 2015, Aqueous electrolyte solution modelling: some limitations of the Pitzer equations, Appl. Geochem., 55, 170, 10.1016/j.apgeochem.2014.09.021 May, 2017, Thermodynamic modeling of aqueous electrolyte systems: current status, J. Chem. Eng. Data, 62, 2481, 10.1021/acs.jced.6b01055 Wang, 2013, Thermodynamic modeling of boric acid and selected metal borate systems, Pure Appl. Chem., 85, 2117, 10.1351/pac-con-12-07-09 Tanveer, 2020, A comprehensive thermodynamic model for high salinity produced waters, AIChE J., 66, e16818, 10.1002/aic.16818 Li, 2015, Phase diagrams and thermochemical modeling of salt lake brine systems. I. LiCl+ H2O system, Calphad, 51, 1, 10.1016/j.calphad.2015.05.001 Li, 2016, Phase diagrams and thermochemical modeling of salt lake brine systems. II. NaCl+H2O, KCl+H2O, MgCl2+H2O and CaCl2+H2O systems, Calphad, 53, 78, 10.1016/j.calphad.2016.03.007 Li, 2017, Understanding the solid solution-aqueous solution equilibria in the KCl + RbCl + H2O system from experiments, atomistic simulation and thermodynamic modeling, J. Solution Chem., 46, 1871, 10.1007/s10953-017-0673-0 Li, 2018, Phase diagrams and thermochemical modeling of salt lake brine systems. III. Li2SO4+H2O, Na2SO4+H2O, K2SO4+H2O, MgSO4+H2O and CaSO4+H2O systems, Calphad, 60, 163, 10.1016/j.calphad.2018.01.002 Li, 2020, Phase diagrams and thermochemical modeling of salt lake brine systems. IV. Thermodynamic framework and program implementation for multicomponent systems, Calphad, xx Zheng, 1988, Distribution of trace elements in salt lakes of Xizang (Tibet), Oceanologia et Limnologia Sinica, 19, 52 Lin, 2000, Bromine resource in brines and its exploitation prospect, J. Salt Lake Res., 8, 59 Liu, 2015, Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP-kerosene solution, Trans. Nonferrous Met. Soc. China, 25, 329, 10.1016/S1003-6326(15)63608-1 Zhang, 2018, Kinetics-controlled separation intensification for cesium and rubidium isolation from salt lake brine, Ind. Eng. Chem. Res., 57, 4399, 10.1021/acs.iecr.7b04820 Bradley, 1979, Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hückel parameters to 350 ∘C and 1 kbar, J. Phys. Chem., 83, 1599, 10.1021/j100475a009 Wagner, 2002, The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, 31, 387, 10.1063/1.1461829 Afeefy, 2014, “Neutral thermochemical data” in NIST chemistry webbook Helgeson, 1981, Am. J. Sci, 28, 1249, 10.2475/ajs.281.10.1249 Shock, 1988, Calculation of thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kbar and 1000 ∘C, Geochim. Cosmochim. Acta, 52, 2009, 10.1016/0016-7037(88)90181-0 Dick, 2008, Calculation of the relative metastabilities of proteins using the CHNOSZ software package, Geochem. Trans., 9, 1, 10.1186/1467-4866-9-10 Sohr, 2017, IUPAC-NIST solubility data series. 104. Lithium sulfate and its double salts in aqueous solutions, J. Phys. Chem. Ref. Data, 46, 023101, 10.1063/1.4977190 Cavalca, 1952, Gazz. Chem. Ital., 82, 394 Skarulis, 1955, The system Na2SO4 - Li2SO4 - H2O at 0 C, J. Am. Chem. Soc, 77, 3489, 10.1021/ja01618a020 Campbell, 1958, The systems Li2SO4 - K2SO4 - H2O and Li2SO4 - Na2SO4 - H2O at 25 C, Can.J. Chem., 36, 171, 10.1139/v58-022 Bodaleva, 1959, Solubility in the system Li2SO4 - Na2SO4 - H2O at 25 C, Zhurnal Negorganicheskoi Khimii, 4, 2816 Khu, 1959, Solubility polytherms for the lithium sulfate - sodium sulfate - water system, Zh. Neorg. Khim., 4, 1910 Lepeshkov, 1960, The solubility in the system Li2SO4 - Na2SO4 - MgSO4 - H2O at 75 C, Zh. Neorg. Khim., 5, 2512 Guo, 2013, Metastable phase equilibria in the aqueous ternary system (Na2SO4 + Li2SO4 + H2O) at 308.15 and 348.15 k, Fluid Phase Equilib., 358, 56, 10.1016/j.fluid.2013.07.048 Druzhinin, 1954, Polytherm of the system lithium sulfate - potassium sulfate - water at 0–50 C, Isvest. Kirgiz. Filiala Akad. Nauk. SSSR, 94, 63 Li, 1994, A study on the ternary systems Li+, K+ / SO42− - H2O and Li+, Mg2+ / SO42− - H2O at 25 C, Acta Phys. Chem., 10, 536 Lepeshkov, 1961, Solubilities in the Li2SO4 - Na2SO4 - K2SO4 - H2O system at 50 C and 100 C, Zh. Neorg. Khim., 6, 1693 Yanko, 1963, Isotherms of the ternary system Li2SO4 - K2SO4 - H2O at 75 C, Irkutskii Univ., Irkutsk, Sb., 81 Shevchuk, 1964, The lithium sulfate - potassium sulfate - magnesium sulfate system at 35 C, Zh. Neorg. Khim., 9, 1242 Kost, 1968, Lithium sulfate - potassium sulfate - magnesium sulfate - water system at 50 C, Zh. Neorg. Khim., 13, 271 Bu, 2015, Solid-liquid metastable phase equilibria for the ternary system (Li2SO4 + K2SO4 + H2O) at 288.15 and 323.15 k, p = 0.1 mpa, Fluid Phase Equilib, 402, 78, 10.1016/j.fluid.2015.05.044 Li, 1995, Thermochemistry of Li2SO4 - K2SO4 - MgSO4 - H2O system and subsystems at 298.15 k, Acta Chim. Sinica, 53, 1071 Lepeshkov, 1959, Solubility in the system Li2SO4 - Na2SO4 - MgSO4 - H2O at 25 C, Zh. Neorg. Khim., 4, 2812 Shevchuk, 1961, The equilibrium in the systems Li2SO4 - MgSO4 - H2O and Rb2SO4 - MgSO4 - H2O at 35 C, Zh. Neorg. Khim., 6, 1955 Aravamudan, 1962, The system lithium sulphate - magnesium sulphate - water at 30 C, Can. J. Chem, 40, 1035, 10.1139/v62-156 Vaisfel’d, 1967, Li2Cl2 magnesium sulfate - lithium sulfate - magnesium chloride - water system at 50 C, Zh. Neorg. Khim., 12, 1688 Deng, 2011, Metastable phase equilibrium in the aqueous ternary system Li2SO4 + MgSO4 + H2O at 323.15 k, J. Chem. Eng. Data, 56, 3585, 10.1021/je200429a Zhou, 2013, Solubility isotherm of the system Li2SO4 - K2SO4 - MgSO4 - H2O at 273.15 k, J. Chem. Eng. Data, 58, 1692, 10.1021/je4001125 Zhou, 2013 Wang, 2015, Solid-liquid phase equilibria in the ternary systems (LiCl + MgCl2 + H2O) and Li2SO4 + MgSO4 + H2O at 288.15 k, J. Chem. Eng. Data, 60, 821, 10.1021/je500946w Yang, 2016, Isopiestic measurements of water activity for the Li2SO4 - MgSO4 - H2O system at 323.15 k and 373.15 k, J. Chem. Eng. Data, 61, 3157, 10.1021/acs.jced.6b00239 Kydynov, 1965, Quaternary system of lithium, potassium, and calcium sulfates in water at 25 C, Zh. Prikl. Khim., 38, 2339 Petrova, 1969, Isotherm of the lithium sulfate - calcium sulfate - water ternary system at 50 C, Izvestiya Akademii Nauk Kirgizskoi SSR, 5, 45 Israel, 1994 Meyerhofer, 1899, Z. Phys. Chem., 28, 469 Foote, 1911, On the formation of double salts. III. The question of double salt formation between the alkali sulfates, J. Am. Chem. Soc., 33, 463, 10.1021/ja02217a002 Smith, 1917, Heterogeneous equilibria between aqueous and metallic solutions. III. The interaction of mixed salt solutions and liquid amalgams. A study of the ionization relations of sodium and potassium chlorides and sulfates in mixtures, J. Am. Chem. Soc., 39, 179, 10.1021/ja02247a001 Amadori, 1919, Atti del reale istituto Veneto, 79, 293 Hamid, 1926, Xxx.-heterogeneous equilibria between the sulphates and nitrates of sodium and potassium and their aqueous solution. Part I. The ternary systems, J. Chem. Soc., 129, 199, 10.1039/JR9262900199 Blasdale, 1918, Equilibria in solutions containing mixtures of salts. I-The system water and the sulfates and chlorides of sodium and potassium, Ind. Eng. Chem., 10, 344, 10.1021/ie50101a006 Teeple, 1929, 78 Janecke, 1935, Kali, 29, 145 Cornec, 1929, Contribution a letude des équilibres entre leau, les nitrates, les chlorures et les sulfates de sodium et de potassium, Ann. Chim., 12, 203 Makarov, 1937, J. Acad. Sci. USSR, 6, 1308 Bayliss, 1947, The system potassium sulfate - sodium sulfate - magnesium sulfate - water at 35 C, J. Am. Chem. Soc., 69, 2033, 10.1021/ja01200a063 Yanateva, 1956, Equilibrium in the system K2SO4 - Na2SO4 - MgSO4 - H2O at 55 C, Zh. Neorg. Khim., 1, 988 Andronova, 1958, Uchenye zapiski yaroslavskogo gosudarstvennogo pedagogicheskogo instituta im, K.D. Ushinskogo, 24, 72 Yanateva, 1959, Zh. Neorg. Khim., 4, 1903 Yanateva, 1963, Zh. Neorg. Khim., 8, 1758 Han, 1983, Experimental study of glaserite, Chin. Sci. Bull., 9, 550 D’Ans, 1915, Kali, 12, 178 Archibald, 1924, The system magnesium sulfate - sodium sulfate - water and a method for the separation of the salts, J. Am. Chem. Soc., 46, 1760, 10.1021/ja01673a002 Blasdale, 1928, The system water and the sulfates of sodium and magnesium, J. Am. Chem. Soc., 50, 35, 10.1021/ja01388a006 Benrath, 1928, The reciprocal salt pair MgSO4 - Na2(NO3)2 - H2O, Z. Anorg. Allg. Chem., 170, 257, 10.1002/zaac.19281700135 Schröder, 1929, Über das reziproke salzpaar MgSO4 - Na2(No3)2 - H2O. II, Z. Anorg. Allg. Chem., 177, 71, 10.1002/zaac.19291770107 Benrath, 1929, Heterogeneous equilibrium at 97 C in systems with contain water, sodium sulfate, and sulfates of bivalent metals, Z. Anorg. Allg. Chem., 179, 369, 10.1002/zaac.19291790132 Konobritskii, 1964, Reciprocal solubilities in the quaternary system H3Bo3 - Na2SO4 - MgSO4 - H2O at 5 C, trudy instituta khimicheskikh nauk, Akademiya Nauk Kazakhskoi SSR, 10, 145 Bekturov, 1967, Physicochemical studies of the processing of natural borates, trudy instituta khimicheskikh nauk, Akademiya Nauk Kazakhskoi SSR, 16, 137 A.D. Pelsha (Ed.), A Handbook on the Solubility of Salt Systems, Khimiya, Leningrad, 1973. Miladinovic, 2008, Isopiestic investigation of the osmotic and activity coefficients of y MgCl2 + (1-y) MgSO4(aq) and the osmotic coefficients of Na2SO4·MgSO4(aq) at 298.15 k, J. Solution Chem., 37, 307, 10.1007/s10953-007-9238-y Cameron, 1904, Calcium sulphate in aqueous solutions of potassium and sodium sulphates, J. Phys. Chem., 8, 335, 10.1021/j150059a003 Hill, 1938, Ternary systems. xxiv. calcium sulfate, sodium sulfate and water, J. Am. Chem. Soc., 60, 1647, 10.1021/ja01274a037 Kydynov, 1957, The solubility of the system of the sulfates of calcium and sodium at 0, 20, 40, 60, and 80 C and the glauberite rocks of Tien-Shan, Izv. Akad. Nauk. Kirg. SSSR, 4, 89 Bittrich, 1959, Zur kenntnis des systems Na+ - Ca2+ - Oh− - SO42− - H2O III. Die ternaren systeme, J. Prakt. Chem., 7, 311, 10.1002/prac.19590070511 Block, 1968, The CaSO4-Na2SO4-NaCl-H2O system at 25 C to 100 C, J. Chem. Eng. Data, 13, 336, 10.1021/je60038a011 van Klooster, 1917, Saturated solutions of potassium and magnesium sulphates at 25 C, J. Phys. Chem., 21, 513, 10.1021/j150177a004 Levi, 1923, Gesáttigte lösungen von kalium -magnesiumsulfat, Z. Phys. Chem., 106, 93, 10.1515/zpch-1923-10606 Benrath, 1929, Das reziproke salzpaar MgSO4+K2(NO3)2=Mg(No3)2+K2SO4. I, Z. Anorg. Chem., 184, 359, 10.1002/zaac.19291840129 Benrath, 1930, Das reziproke salzpaar MgSO4 + K2(No3)2 = Mg(No3)2 + K2SO4. II. Die isotherme bei 0∘, Z. Anorg. Chem., 189, 72, 10.1002/zaac.19301890107 Starrs, 1930, The system: potassium sulphate, magnesium sulphate, water, J. Phys. Chem., 34, 1058, 10.1021/j150311a014 Starrs, 1930, The ternary system: potassium sulphate - magnesium sulphate - water, J. Phys. Chem., 34, 2367, 10.1021/j150316a019 Benrath, 1931, Das reziproke salzpaar MgSO4 + K2(No3)2 = Mg(No3)2 + K2SO4. III, Z. Anorg. Chem., 197, 113, 10.1002/zaac.19311970111 Lukyanova, 1956, The solubility in quaternary reciprocal system (2KCl + MgSO4 = K2SO4 + MgCl2) + H2O at 75 C, Zh. Neorg. Khim, 1, 298 Campbell, 1934, The system MgCl2 - KCl - MgSO4 - K2SO4 - H2O at 100 ∘C, J. Am. Chem. Soc., 56, 2507, 10.1021/ja01327a001 Bozza, 1934, Giorn. Chim. Ind. Appl., 16, 111 Kurnakov, 1938, Ann. Secteur Anal. Phys.-Chim. Inst. Chem. Gen. (USSR), 10, 307 Lepeshkov, 1949, Solubility isotherm of the aqueous reciprocal system K2Cl2 + MgSO4 = K2SO4 + MgCl2 at 25, Izvest. Sekt. Fiz.-Khim. Anal., Inst. Obsh. Neorg. Khim., Akad. Nauk SSSR, 17, 338 Lepeshkov, 1958, Fiziko-khimicheskoe izuchenie sistemy K2SO4 - MgSO4 - CaSO4 - H2O pri 35-gradusakh, Zh. Neorg. Khim., 3, 2395 Wollmann, 2010, Solid-liquid phase equilibria in the system K2SO4 - MgSO4 - H2O at 318 k, Fluid Phase Equilib., 291, 151, 10.1016/j.fluid.2009.12.005 Anderson, 1920, The formation of the double salts of calcium and potassium sulfates at 100∘ C, Ind. Eng. Chem., 12, 243, 10.1021/ie50123a013 Hill, 1934, Ternary systems. XIX. Calcium sulfate, potassium sulfate and water, J. Am. Chem. Soc., 56, 1071, 10.1021/ja01320a019 Hill, 1937, The transition temperature of gypsum to anhydrite, J. Am. Chem. Soc., 59, 2242, 10.1021/ja01290a039 Sveshnikova, 1952, Investigation of solubility in the reciprocal system CaSO4 - KCl - H2O at 55 ∘C, Bull. Acad. Sci. USSR Div. Chem. Sci., 1, 45, 10.1007/BF01176571 Bodaleva, 1956, Solubility study in the system K2SO4 - MgSO4 - CaSO4 - H2O at 55 C, Zh. Neorg. Khim., 1, 995 Cameron, 1906, The solubility of gypsum in magnesium sulphate solutions, J. Phys. Chem., 10, 210, 10.1021/j150075a002 Harkins, 1919, Intermediate and complex ions. V. The solubility product and activity of the ions in bi-bivalent salts, J. Am. Chem. Soc., 41, 1155, 10.1021/ja02229a002 Novikova, 1957, Study of the solubility in the system CaSO4 - MgSO4 - H2O at 35 C by the method of tracer atoms, Zh. Neorg. Khim., 2, 662 Wollmann, 2008, Solubility of gypsum in MSO4 solutions (M = Mg, Mn, Co, Ni,Cu, Zn) at 298.15 k and 313.15 k, J. Chem. Eng. Data, 53, 1375, 10.1021/je800093e Wang, 2014, Experimental determination and modeling of the solubility of CaSo4·2H2O and CaSo4 in the quaternary system CaSO4 + MgSO4 + H2SO4 + H2O, Ind. Eng. Chem. Res., 53, 12839, 10.1021/ie5021365 Lindstrom, 2016, Crystallization behavior of Na2SO4 – MgSO4 salt mixtures in sandstone and comparison to single salt behavior, Appl. Geochem., 69, 50, 10.1016/j.apgeochem.2016.04.005 Dai, 2015, A thermodynamic model for the solubility prediction of barite, calcite, gypsum, and anhydrite, and the association constant estimation of CaSO4(0) ion pair up to 250∘ C and 22000 psi, J. Chem. Eng. Data, 60, 766, 10.1021/je5008873 Zeng, 2012, Study on the solubility of the aqueous quaternary system Li2SO4 + Na2SO4 + K2SO4 + H2O at 273.15 k, J. Chem. Eng. Data, 57, 3672, 10.1021/je300874c Cui, 2017, Measurements and calculations of solid-liquid equilibria in quaternary system Li2SO4 - Na2SO4 - K2SO4 - H2O at 288 k, Chem. Res. Chin. Univ., 33, 460, 10.1007/s40242-017-6275-y Lepeshkov, 1958, Solubility studies in the system Li2SO4 - Na2SO4 - K2SO4 - H2O at 25 C, Zh. Neorg. Khim., 3, 2781 Campbell, 1959, The system Li+ - na+ - K+ - SO42+ - and water at 25.0 C, Can. J. Chem., 37, 1409, 10.1139/v59-206 Li, 2010, Solid-liquid metastable equilibria in the quaternary system Li2SO4 + MgSO4 + Na2SO4 + H2O at t = 263.15 k, Fluid Phase Equilib., 293, 42, 10.1016/j.fluid.2010.02.016 Steiger, 2019, Solid-liquid metastable equilibria for solar evaporation of brines and solubility determination: a critical discussion, J. Solution Chem., 48, 1009, 10.1007/s10953-018-0794-0 Königsberger, 2019, Editorial: guidelines for the measurement of solid-liquid solubility data at atmospheric pressure, J. Chem. Eng. Data, 64, 381, 10.1021/acs.jced.8b01263 Wang, 2020, Solid-liquid phase equilibria of the quaternary system (Li2SO4 + Na2SO4 + MgSO4 + H2O) at 288.15 k: experimental and model simulation, J. Chem. Eng. Data, 65, 2597, 10.1021/acs.jced.0c00003 Zuo, 2020, Stable phase diagram of the quaternary water-salt system Li+, Na+, Mg2+SO42− - H2O at t = 323 k, J. Chem. Eng. Data, 65, 133, 10.1021/acs.jced.9b00813 Cui, 2019, Mineral solubilities of salts in the three quaternary systems: LiCl - NaCl - MgCl2 - H2O, LiCl - KCl - MgCl2 - H2O and Li2SO4 - K2SO4 - MgSO4 - H2O at 288.15 k, J Chem Thermodyn, 138, 127, 10.1016/j.jct.2018.12.011 Fang, 1994, Studies on the phase diagram and solution properties for the quaternary system Li+, K+, Mg2+ / SO42− - H2O at 25 c, Acta Chim. Sinica, 52, 954 Shevchuk, 1964, The Li2Cl2 + MgSO4 = li2SO4 + MgCl2 - H2O system at 35∘C, Russ. J. Inorg. Chem., 9, 1491 Shevchuk, 1969, Zh. Neorg. Khim., 14, 1663 Yanateva, 1958, Obem kristallizatsii shenita v morskoi sisteme K, Na, Mg Cl, SO4 - H2O at 0 c, Zh. Neorg. Khim., 3, 2408 Andronova, 1958, Izoterma rastvorimosti sistemy K2SO4 - Na2SO4 - MgSO4 - H2O pri 75-gradusakh, Zh. Neorg. Khim., 3, 2156 Yanateva, 1949, Ivz. Akad Nauk SSSR, 17, 373 Abutkova, 1972 Soloveva, 1966 Kolosov, 1959, Izv. Akad. Nauk. SSSR, 3, 73 Wollmann, 2010 Perova, 1970, Potassium sulfate + magnesium sulfate + calcium sulfate + water system at 75 deg, Zh. Neorg. Khim., 15, 2821 Li, 1995, Studies on the phase diagram for the quinary system Li+, Na+, K+, Mg2+ / SO42− – H2O at 25 C, J. Salt Lake Sci., 3, 34