Phase change material-based thermal energy storage
Tài liệu tham khảo
Wang, 2017, Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage, Nat. Commun., 8, 1478, 10.1038/s41467-017-01618-w
Faraj, 2020, Phase change material thermal energy storage systems for cooling applications in buildings: a review, Renew. Sustain. Energy Rev., 119, 109579, 10.1016/j.rser.2019.109579
de Bock, 2020, A System to Package Perspective on Transient Thermal Management of Electronics, J. Electron. Packag., 142, 1, 10.1115/1.4047474
Yan, 2020, Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study, J. Energy Storage, 30, 101445, 10.1016/j.est.2020.101445
Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475
Prieto, 2019, Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance, Appl. Energy, 254, 113646, 10.1016/j.apenergy.2019.113646
Weinstein, 2015, Concentrating Solar Power, Chem. Rev., 115, 12797, 10.1021/acs.chemrev.5b00397
Sarbu, 2019, Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials, Int. J. Energy Res., 43, 29, 10.1002/er.4196
Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev., 13, 318, 10.1016/j.rser.2007.10.005
Zhang, 2019, Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage, Appl. Energy, 233–234, 208, 10.1016/j.apenergy.2018.10.036
Yang, 2020, Thermophysical properties and applications of nano-enhanced PCMs: an update review, Energy Convers. Manage., 214, 112876, 10.1016/j.enconman.2020.112876
Baby, 2012, Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling, Int. J. Heat Mass Transf., 55, 1642, 10.1016/j.ijheatmasstransfer.2011.11.020
Hodes, 2002, Transient Thermal Management of a Handset Using Phase Change Material (PCM), J. Electron. Packag. Trans. ASME, 124, 419, 10.1115/1.1523061
Gulfam, 2019, Advanced thermal systems driven by paraffin-based phase change materials – a review, Appl. Energy, 238, 582, 10.1016/j.apenergy.2019.01.114
Ganatra, 2018, Experimental investigation of phase change materials for thermal management of handheld devices, Int. J. Therm. Sci., 129, 358, 10.1016/j.ijthermalsci.2018.03.012
Gerkman, 2020, Toward Controlled Thermal Energy Storage and Release in Organic Phase Change Materials, Joule, 4, 1621, 10.1016/j.joule.2020.07.011
Avrami, 1939, Kinetics of phase change. I: general theory, J. Chem. Phys., 7, 1103, 10.1063/1.1750380
Shchukina, 2018, Nanoencapsulation of phase change materials for advanced thermal energy storage systems, Chem. Soc. Rev., 47, 4156, 10.1039/C8CS00099A
Munitz, 1988, Solidification Of Supercooled Fe-Ni Alloys, Adv. Mater. Manuf. Process., 3, 419
Rettenmayr, 2009, Melting and remelting phenomena, Int. Mater. Rev., 54, 1, 10.1179/174328009X392930
Zhang, 2017, Interaction of local solidification and remelting during dendrite coarsening - modeling and comparison with experiments, Sci. Rep., 7, 17809, 10.1038/s41598-017-17857-2
Hu, 1996, Mathematical modelling of solidification and melting: a review, Model. Simul. Mater. Sci. Eng., 4, 371, 10.1088/0965-0393/4/4/004
Hunter, 1989, The Enthalpy Method for Heat Conduction Problems With Moving Boundaries, J. Heat Transfer, 111, 239, 10.1115/1.3250668
Sobolev, 2015, Rapid phase transformation under local non-equilibrium diffusion conditions, Mater. Sci. Technol. (United Kingdom), 31, 1607, 10.1179/1743284715Y.0000000051
Hennessy, 2018, Modelling ultra-fast nanoparticle melting with the Maxwell-Cattaneo equation, Appl. Math. Model., 69, 201, 10.1016/j.apm.2018.12.004
Richardson, 1996, The Pomeranchuk effect
Mehling, 2013, Enthalpy and temperature of the phase change solid-liquid - an analysis of data of compounds employing entropy, Sol. Energy, 95, 290, 10.1016/j.solener.2013.06.011
Shamberger, 2020, Review of metallic phase change materials for high heat flux transient thermal management applications, Appl. Energy, 258, 113955, 10.1016/j.apenergy.2019.113955
Starkweather, 1986, The heat of fusion of polybutene-1, J. Polym. Sci. Part B Polym. Physiol., 24, 1509, 10.1002/polb.1986.090240709
Raud, 2017, A critical review of eutectic salt property prediction for latent heat energy storage systems, Renew. Sustain. Energy Rev., 70, 936, 10.1016/j.rser.2016.11.274
Dole, 1959, Melting points and heats of fusion of polymers and copolymers, Makromol. Chem., 34, 29, 10.1002/macp.1959.020340102
Schlick, 2010
Cui, 2011, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Sol. Energy Mater. Sol. Cells, 95, 1208, 10.1016/j.solmat.2011.01.021
Babaei, 2013, Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene, Int. J. Heat Mass Transf., 58, 209, 10.1016/j.ijheatmasstransfer.2012.11.013
Li, 2014, Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene, Sol. Energy Mater. Sol. Cells, 128, 48, 10.1016/j.solmat.2014.05.018
Raabe, 2004
Wełnic, 2009, Density Functional Theory Calculations for Phase Change Materials, 17
Wu, 2019, Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage, Comput. Mater. Sci., 170, 109051, 10.1016/j.commatsci.2019.05.049
Wang, 2015, Aluminum and silicon based phase change materials for high capacity thermal energy storage, Appl. Therm. Eng., 89, 204, 10.1016/j.applthermaleng.2015.05.037
Kattner, 2016, The CALPHAD Method and Its Role in Material and Process Development., Tecnol. Metal. Mater. Min., 13, 3, 10.4322/2176-1523.1059
Gunasekara, 2017, Phase equilibrium in the design of phase change materials for thermal energy storage: state-of-the-art, Renew. Sustain. Energy Rev., 73, 558, 10.1016/j.rser.2017.01.108
Rycerz, 2013, Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements, J. Therm. Anal. Calorim., 113, 231, 10.1007/s10973-013-3097-0
Hahn, 2012, Phase-Change Problems, 452
Shamberger, 2015, Cooling capacity figure of merit for phase change materials, J. Heat Transfer, 138, 024502, 10.1115/1.4031252
Yang, 2020, A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy, Appl. Phys. Lett., 116, 071901, 10.1063/1.5135568
Weinstein, 2008, The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics, J. Heat Transfer, 130, 1, 10.1115/1.2818764
Feng, 2020, Unconventional Alloys Confined in Nanoparticles: Building Blocks for New Matter, Matter, 3, 1646, 10.1016/j.matt.2020.07.027
Li, 2013, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Energy, 106, 25, 10.1016/j.apenergy.2013.01.031
Xu, 2018, Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment, Appl. Energy, 212, 868, 10.1016/j.apenergy.2017.12.082
Yang, 2020, Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam, Appl. Energy, 268, 115019, 10.1016/j.apenergy.2020.115019
Shamberger, 2018, Cooling power and characteristic times of composite heatsinks and insulants, Int. J. Heat Mass Transf., 117, 1205, 10.1016/j.ijheatmasstransfer.2017.10.085
Liu, 2019, Influence of crystalline polymorphism on the phase change properties of sorbitol-Au nanocomposites, Mater. Today Energy, 12, 379, 10.1016/j.mtener.2019.03.007
Şahan, 2015, Improving thermal conductivity phase change materials - a study of paraffin nanomagnetite composites, Sol. Energy Mater. Sol. Cells, 137, 61, 10.1016/j.solmat.2015.01.027
Mohamed, 2017, A review on current status and challenges of inorganic phase change materials for thermal energy storage systems, Renew. Sustain. Energy Rev., 70, 1072, 10.1016/j.rser.2016.12.012
Castellon, 2008, Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC—a study of different measurement procedures and their accuracy, Int. J. Energy Res., 32, 1258, 10.1002/er.1443
Chen, 2020, Smart Utilization of Multifunctional Metal Oxides in Phase Change Materials, Matter, 3, 708, 10.1016/j.matt.2020.05.016
Pielichowska, 2014, Phase change materials for thermal energy storage, Prog. Mater. Sci., 65, 67, 10.1016/j.pmatsci.2014.03.005
Wei, 2020, Hot-spot thermal management by phase change materials enhanced by spatially graded metal meshes, Int. J. Heat Mass Transf., 150, 119153, 10.1016/j.ijheatmasstransfer.2019.119153
Moon, 2020, High power density thermal energy storage using additively manufactured heat exchangers and phase change material, Int. J. Heat Mass Transf., 153, 119591, 10.1016/j.ijheatmasstransfer.2020.119591
Tamraparni, 2021, Design and Optimization of Lamellar Phase Change Composites for Thermal Energy Storage, Adv. Eng. Mater., 23, 2001052, 10.1002/adem.202001052
Vargas, 2020, Topology Optimized Phase Change Material Integrated Heat Sinks and Validation, 703
Yang, 2018, Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock, Energy Convers. Manage., 160, 467, 10.1016/j.enconman.2018.01.056
Li, 2016, Combination of heat storage and thermal spreading for high power portable electronics cooling, Int. J. Heat Mass Transf., 98, 550, 10.1016/j.ijheatmasstransfer.2016.03.068
Yang, 2021, Phase Change Material Heat Sink for Transient Cooling of High-Power Devices, Int. J. Heat Mass Transf., 170, 121033, 10.1016/j.ijheatmasstransfer.2021.121033
Woods, 2021, Rate capability and Ragone plots for phase change thermal energy storage, Nat. Energy, 6, 295, 10.1038/s41560-021-00778-w
Ling, 2015, A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling, Appl. Energy, 148, 403, 10.1016/j.apenergy.2015.03.080
Zalewski, 2012, Experimental study of small-scale solar wall integrating phase change material, Sol. Energy, 86, 208, 10.1016/j.solener.2011.09.026
Niknam, 2021, Additively manufactured heat exchangers: a review on opportunities and challenges, Int. J. Adv. Manuf. Technol., 112, 601, 10.1007/s00170-020-06372-w
Jian, 2015, Design and optimization of solid thermal energy storage modules for solar thermal power plant applications, Appl. Energy, 139, 30, 10.1016/j.apenergy.2014.11.019
Parham, 2021, Commercialisation of ultra-high temperature energy storage applications: the 1414 Degrees approach, 331
Albertus, 2020, Long-Duration Electricity Storage Applications, Economics, and Technologies, Joule, 4, 21, 10.1016/j.joule.2019.11.009
Yi, 2020, Transient performance study of high-specific-power motor integrated with phase change material for transportation electrification, 119
Gendreau, 2016, The Neutron star Interior Composition Explorer (NICER): design and development
Evola, 2013, A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings, Build. Environ., 59, 517, 10.1016/j.buildenv.2012.09.021
Madad, 2018, Phase Change Materials for Building Applications: A Thorough Review and New Perspectives, Buildings, 8, 63, 10.3390/buildings8050063
Li, 2018, Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool, Appl. Energy, 209, 224, 10.1016/j.apenergy.2017.10.095
Stropnik, 2016, Increasing the efficiency of PV panel with the use of PCM, Renew. Energy, 97, 671, 10.1016/j.renene.2016.06.011
Zhou, 2020, Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations—study of modelling and application in five climatic regions, Energy, 192, 116608, 10.1016/j.energy.2019.116608
Nejman, 2017, The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules, Appl. Therm. Eng., 127, 212, 10.1016/j.applthermaleng.2017.08.037
Peng, 2020, Advanced Textiles for Personal Thermal Management and Energy, Joule, 4, 724, 10.1016/j.joule.2020.02.011
Kshetrimayum, 2019, Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system, Appl. Therm. Eng., 159, 113797, 10.1016/j.applthermaleng.2019.113797
Broughton, 2018, Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes, J. Electron. Packag. Trans. ASME, 140, 1
Jankowski, 2014, A review of phase change materials for vehicle component thermal buffering, Appl. Energy, 113, 1525, 10.1016/j.apenergy.2013.08.026
Lv, 2011, Feasibility study for thermal protection by microencapsulated phase change micro/nanoparticles during cryosurgery, Chem. Eng. Sci., 66, 3941, 10.1016/j.ces.2011.05.031
Bayon, 2018, Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications, Energy, 149, 473, 10.1016/j.energy.2017.11.084
Bird, 2020, Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage, Appl. Energy, 271, 114955, 10.1016/j.apenergy.2020.114955