Phase change material-based thermal energy storage

Cell Reports Physical Science - Tập 2 - Trang 100540 - 2021
Tianyu Yang1, William P. King1,2,3,4,5, Nenad Miljkovic1,3,5,6
1Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
2Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
3Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
4Beckman Institute for Advanced Study, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
5Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
6International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

Tài liệu tham khảo

Wang, 2017, Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage, Nat. Commun., 8, 1478, 10.1038/s41467-017-01618-w Faraj, 2020, Phase change material thermal energy storage systems for cooling applications in buildings: a review, Renew. Sustain. Energy Rev., 119, 109579, 10.1016/j.rser.2019.109579 de Bock, 2020, A System to Package Perspective on Transient Thermal Management of Electronics, J. Electron. Packag., 142, 1, 10.1115/1.4047474 Yan, 2020, Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study, J. Energy Storage, 30, 101445, 10.1016/j.est.2020.101445 Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475 Prieto, 2019, Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance, Appl. Energy, 254, 113646, 10.1016/j.apenergy.2019.113646 Weinstein, 2015, Concentrating Solar Power, Chem. Rev., 115, 12797, 10.1021/acs.chemrev.5b00397 Sarbu, 2019, Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials, Int. J. Energy Res., 43, 29, 10.1002/er.4196 Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev., 13, 318, 10.1016/j.rser.2007.10.005 Zhang, 2019, Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage, Appl. Energy, 233–234, 208, 10.1016/j.apenergy.2018.10.036 Yang, 2020, Thermophysical properties and applications of nano-enhanced PCMs: an update review, Energy Convers. Manage., 214, 112876, 10.1016/j.enconman.2020.112876 Baby, 2012, Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling, Int. J. Heat Mass Transf., 55, 1642, 10.1016/j.ijheatmasstransfer.2011.11.020 Hodes, 2002, Transient Thermal Management of a Handset Using Phase Change Material (PCM), J. Electron. Packag. Trans. ASME, 124, 419, 10.1115/1.1523061 Gulfam, 2019, Advanced thermal systems driven by paraffin-based phase change materials – a review, Appl. Energy, 238, 582, 10.1016/j.apenergy.2019.01.114 Ganatra, 2018, Experimental investigation of phase change materials for thermal management of handheld devices, Int. J. Therm. Sci., 129, 358, 10.1016/j.ijthermalsci.2018.03.012 Gerkman, 2020, Toward Controlled Thermal Energy Storage and Release in Organic Phase Change Materials, Joule, 4, 1621, 10.1016/j.joule.2020.07.011 Avrami, 1939, Kinetics of phase change. I: general theory, J. Chem. Phys., 7, 1103, 10.1063/1.1750380 Shchukina, 2018, Nanoencapsulation of phase change materials for advanced thermal energy storage systems, Chem. Soc. Rev., 47, 4156, 10.1039/C8CS00099A Munitz, 1988, Solidification Of Supercooled Fe-Ni Alloys, Adv. Mater. Manuf. Process., 3, 419 Rettenmayr, 2009, Melting and remelting phenomena, Int. Mater. Rev., 54, 1, 10.1179/174328009X392930 Zhang, 2017, Interaction of local solidification and remelting during dendrite coarsening - modeling and comparison with experiments, Sci. Rep., 7, 17809, 10.1038/s41598-017-17857-2 Hu, 1996, Mathematical modelling of solidification and melting: a review, Model. Simul. Mater. Sci. Eng., 4, 371, 10.1088/0965-0393/4/4/004 Hunter, 1989, The Enthalpy Method for Heat Conduction Problems With Moving Boundaries, J. Heat Transfer, 111, 239, 10.1115/1.3250668 Sobolev, 2015, Rapid phase transformation under local non-equilibrium diffusion conditions, Mater. Sci. Technol. (United Kingdom), 31, 1607, 10.1179/1743284715Y.0000000051 Hennessy, 2018, Modelling ultra-fast nanoparticle melting with the Maxwell-Cattaneo equation, Appl. Math. Model., 69, 201, 10.1016/j.apm.2018.12.004 Richardson, 1996, The Pomeranchuk effect Mehling, 2013, Enthalpy and temperature of the phase change solid-liquid - an analysis of data of compounds employing entropy, Sol. Energy, 95, 290, 10.1016/j.solener.2013.06.011 Shamberger, 2020, Review of metallic phase change materials for high heat flux transient thermal management applications, Appl. Energy, 258, 113955, 10.1016/j.apenergy.2019.113955 Starkweather, 1986, The heat of fusion of polybutene-1, J. Polym. Sci. Part B Polym. Physiol., 24, 1509, 10.1002/polb.1986.090240709 Raud, 2017, A critical review of eutectic salt property prediction for latent heat energy storage systems, Renew. Sustain. Energy Rev., 70, 936, 10.1016/j.rser.2016.11.274 Dole, 1959, Melting points and heats of fusion of polymers and copolymers, Makromol. Chem., 34, 29, 10.1002/macp.1959.020340102 Schlick, 2010 Cui, 2011, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Sol. Energy Mater. Sol. Cells, 95, 1208, 10.1016/j.solmat.2011.01.021 Babaei, 2013, Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene, Int. J. Heat Mass Transf., 58, 209, 10.1016/j.ijheatmasstransfer.2012.11.013 Li, 2014, Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene, Sol. Energy Mater. Sol. Cells, 128, 48, 10.1016/j.solmat.2014.05.018 Raabe, 2004 Wełnic, 2009, Density Functional Theory Calculations for Phase Change Materials, 17 Wu, 2019, Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage, Comput. Mater. Sci., 170, 109051, 10.1016/j.commatsci.2019.05.049 Wang, 2015, Aluminum and silicon based phase change materials for high capacity thermal energy storage, Appl. Therm. Eng., 89, 204, 10.1016/j.applthermaleng.2015.05.037 Kattner, 2016, The CALPHAD Method and Its Role in Material and Process Development., Tecnol. Metal. Mater. Min., 13, 3, 10.4322/2176-1523.1059 Gunasekara, 2017, Phase equilibrium in the design of phase change materials for thermal energy storage: state-of-the-art, Renew. Sustain. Energy Rev., 73, 558, 10.1016/j.rser.2017.01.108 Rycerz, 2013, Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements, J. Therm. Anal. Calorim., 113, 231, 10.1007/s10973-013-3097-0 Hahn, 2012, Phase-Change Problems, 452 Shamberger, 2015, Cooling capacity figure of merit for phase change materials, J. Heat Transfer, 138, 024502, 10.1115/1.4031252 Yang, 2020, A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy, Appl. Phys. Lett., 116, 071901, 10.1063/1.5135568 Weinstein, 2008, The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics, J. Heat Transfer, 130, 1, 10.1115/1.2818764 Feng, 2020, Unconventional Alloys Confined in Nanoparticles: Building Blocks for New Matter, Matter, 3, 1646, 10.1016/j.matt.2020.07.027 Li, 2013, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Energy, 106, 25, 10.1016/j.apenergy.2013.01.031 Xu, 2018, Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment, Appl. Energy, 212, 868, 10.1016/j.apenergy.2017.12.082 Yang, 2020, Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam, Appl. Energy, 268, 115019, 10.1016/j.apenergy.2020.115019 Shamberger, 2018, Cooling power and characteristic times of composite heatsinks and insulants, Int. J. Heat Mass Transf., 117, 1205, 10.1016/j.ijheatmasstransfer.2017.10.085 Liu, 2019, Influence of crystalline polymorphism on the phase change properties of sorbitol-Au nanocomposites, Mater. Today Energy, 12, 379, 10.1016/j.mtener.2019.03.007 Şahan, 2015, Improving thermal conductivity phase change materials - a study of paraffin nanomagnetite composites, Sol. Energy Mater. Sol. Cells, 137, 61, 10.1016/j.solmat.2015.01.027 Mohamed, 2017, A review on current status and challenges of inorganic phase change materials for thermal energy storage systems, Renew. Sustain. Energy Rev., 70, 1072, 10.1016/j.rser.2016.12.012 Castellon, 2008, Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC—a study of different measurement procedures and their accuracy, Int. J. Energy Res., 32, 1258, 10.1002/er.1443 Chen, 2020, Smart Utilization of Multifunctional Metal Oxides in Phase Change Materials, Matter, 3, 708, 10.1016/j.matt.2020.05.016 Pielichowska, 2014, Phase change materials for thermal energy storage, Prog. Mater. Sci., 65, 67, 10.1016/j.pmatsci.2014.03.005 Wei, 2020, Hot-spot thermal management by phase change materials enhanced by spatially graded metal meshes, Int. J. Heat Mass Transf., 150, 119153, 10.1016/j.ijheatmasstransfer.2019.119153 Moon, 2020, High power density thermal energy storage using additively manufactured heat exchangers and phase change material, Int. J. Heat Mass Transf., 153, 119591, 10.1016/j.ijheatmasstransfer.2020.119591 Tamraparni, 2021, Design and Optimization of Lamellar Phase Change Composites for Thermal Energy Storage, Adv. Eng. Mater., 23, 2001052, 10.1002/adem.202001052 Vargas, 2020, Topology Optimized Phase Change Material Integrated Heat Sinks and Validation, 703 Yang, 2018, Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock, Energy Convers. Manage., 160, 467, 10.1016/j.enconman.2018.01.056 Li, 2016, Combination of heat storage and thermal spreading for high power portable electronics cooling, Int. J. Heat Mass Transf., 98, 550, 10.1016/j.ijheatmasstransfer.2016.03.068 Yang, 2021, Phase Change Material Heat Sink for Transient Cooling of High-Power Devices, Int. J. Heat Mass Transf., 170, 121033, 10.1016/j.ijheatmasstransfer.2021.121033 Woods, 2021, Rate capability and Ragone plots for phase change thermal energy storage, Nat. Energy, 6, 295, 10.1038/s41560-021-00778-w Ling, 2015, A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling, Appl. Energy, 148, 403, 10.1016/j.apenergy.2015.03.080 Zalewski, 2012, Experimental study of small-scale solar wall integrating phase change material, Sol. Energy, 86, 208, 10.1016/j.solener.2011.09.026 Niknam, 2021, Additively manufactured heat exchangers: a review on opportunities and challenges, Int. J. Adv. Manuf. Technol., 112, 601, 10.1007/s00170-020-06372-w Jian, 2015, Design and optimization of solid thermal energy storage modules for solar thermal power plant applications, Appl. Energy, 139, 30, 10.1016/j.apenergy.2014.11.019 Parham, 2021, Commercialisation of ultra-high temperature energy storage applications: the 1414 Degrees approach, 331 Albertus, 2020, Long-Duration Electricity Storage Applications, Economics, and Technologies, Joule, 4, 21, 10.1016/j.joule.2019.11.009 Yi, 2020, Transient performance study of high-specific-power motor integrated with phase change material for transportation electrification, 119 Gendreau, 2016, The Neutron star Interior Composition Explorer (NICER): design and development Evola, 2013, A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings, Build. Environ., 59, 517, 10.1016/j.buildenv.2012.09.021 Madad, 2018, Phase Change Materials for Building Applications: A Thorough Review and New Perspectives, Buildings, 8, 63, 10.3390/buildings8050063 Li, 2018, Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool, Appl. Energy, 209, 224, 10.1016/j.apenergy.2017.10.095 Stropnik, 2016, Increasing the efficiency of PV panel with the use of PCM, Renew. Energy, 97, 671, 10.1016/j.renene.2016.06.011 Zhou, 2020, Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations—study of modelling and application in five climatic regions, Energy, 192, 116608, 10.1016/j.energy.2019.116608 Nejman, 2017, The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules, Appl. Therm. Eng., 127, 212, 10.1016/j.applthermaleng.2017.08.037 Peng, 2020, Advanced Textiles for Personal Thermal Management and Energy, Joule, 4, 724, 10.1016/j.joule.2020.02.011 Kshetrimayum, 2019, Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system, Appl. Therm. Eng., 159, 113797, 10.1016/j.applthermaleng.2019.113797 Broughton, 2018, Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes, J. Electron. Packag. Trans. ASME, 140, 1 Jankowski, 2014, A review of phase change materials for vehicle component thermal buffering, Appl. Energy, 113, 1525, 10.1016/j.apenergy.2013.08.026 Lv, 2011, Feasibility study for thermal protection by microencapsulated phase change micro/nanoparticles during cryosurgery, Chem. Eng. Sci., 66, 3941, 10.1016/j.ces.2011.05.031 Bayon, 2018, Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications, Energy, 149, 473, 10.1016/j.energy.2017.11.084 Bird, 2020, Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage, Appl. Energy, 271, 114955, 10.1016/j.apenergy.2020.114955