Phase boundary mapping for high thermoelectric performance β-Zn4Sb3 in Zn–In–Sb ternary system
Tài liệu tham khảo
Bell, 2008, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457, 10.1126/science.1158899
DiSalvo, 1999, Thermoelectric cooling and power generation, Science (New York, N.Y.), 285, 703, 10.1126/science.285.5428.703
Tan, 2016, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116, 12123, 10.1021/acs.chemrev.6b00255
Sootsman, 2009, New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed., 48, 8616, 10.1002/anie.200900598
Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090
Tang, 2022, A comprehensive review on Bi2Te3-based thin films: thermoelectrics and beyond, Interdiscipl. Mater., 1, 88, 10.1002/idm2.12009
Snyder, 2004, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater., 3, 458, 10.1038/nmat1154
Schweika, 2007, Dumbbell rattling in thermoelectric zinc antimony, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.125501
Sofo, 1994, Optimum band gap of a thermoelectric material, Phys. Rev. B, 49, 4565, 10.1103/PhysRevB.49.4565
Wang, 2011, Optimizing thermoelectric performance of Cd-doped β-Zn4Sb3 through self-adjusting carrier concentration, Intermetallics, 19, 1823, 10.1016/j.intermet.2011.07.020
Wang, 2011, Enhancement of the thermoelectric performance of β-Zn4Sb3 by in situ nanostructures and minute Cd-doping, Acta Mater., 59, 4805, 10.1016/j.actamat.2011.04.023
Pedersen, 2009, The effect of Mg doping on the thermoelectric performance of Zn4Sb3, J. Appl. Phys., 105, 10.1063/1.3037203
Liu, 2010, Ag and Cu doping and their effects on the thermoelectric properties of β-Zn4Sb3, Phys. Rev. B, 81, 10.1103/PhysRevB.81.245215
Tang, 2012, Crystal structure and bonding characteristics of In-doped β-Zn4Sb3, J. Solid State Chem., 193, 89, 10.1016/j.jssc.2012.03.059
Tang, 2014, Crystal structure, chemical bond and enhanced performance of β-Zn4Sb3 compounds with interstitial indium dopant, J. Alloys Compd., 601, 50, 10.1016/j.jallcom.2014.02.060
Wei, 2015, Enhancement of thermoelectric figure of merit in β-Zn4Sb3 by indium doping control, Appl. Phys. Lett., 107, 10.1063/1.4931361
Carlini, 2014, Thermoelectric properties of Zn4Sb3 intermetallic compound doped with Aluminum and Silver, Intermetallics, 45, 60, 10.1016/j.intermet.2013.10.002
Liu, 2007, Thermoelectric properties of (Zn0.98M0.02) 4Sb3 (M=Al, Ga and In) at low temperatures, J. Phys. Appl. Phys., 40, 7811, 10.1088/0022-3727/40/24/033
Deng, 2017, Thermal stability and electrical transport properties of single-crystalline β-Zn4Sb3 Co-doped by Ga/Sn, J. Electron. Mater., 46, 6804, 10.1007/s11664-017-5747-7
Wang, 2012, Enhanced thermoelectric performance and thermal stability in β-Zn4Sb3 by slight Pb-doping, J. Electron. Mater., 41, 1091, 10.1007/s11664-012-1927-7
Liu, 2012, Effect of addition of Ag, in or Pb on the structure and thermoelectric performance of β-Zn4Sb3, J. Electron. Mater., 41, 2118, 10.1007/s11664-012-2139-x
Li, 2009, Effects of Nb doping on thermoelectric properties of Zn4Sb3 at high temperatures, J. Mater. Res., 24, 430, 10.1557/JMR.2009.0058
Wang, 2013, Resonant distortion of electronic density of states and enhancement of thermoelectric properties of β-Zn4Sb3 by Pr doping, J. Appl. Phys., 113
Wang, 2013, Enhancement of thermopower and thermoelectric performance through resonant distortion of electronic density of states of β-Zn4Sb3 doped with Sm, Appl. Phys. Lett., 102
Pan, 2010, Effects of Ag doping on thermoelectric properties of Zn4Sb3 at low temperatures, J. Alloys Compd., 489, 228, 10.1016/j.jallcom.2009.09.058
Song, 2018, Enhanced thermoelectric performance and high-temperature thermal stability of p-type Ag-doped β-Zn4Sb3, J. Mater. Chem. A, 6, 4079, 10.1039/C7TA10859A
Wang, 2012, The realization of a high thermoelectric figure of merit in Ge-substituted β-Zn4Sb3 through band structure modification, J. Mater. Chem., 22, 13977, 10.1039/c2jm30906h
Zhou, 2010, Effect of Bi doping on the thermoelectric properties of Zn4Sb3, J. Alloys Compd., 503, 464, 10.1016/j.jallcom.2010.05.034
Li, 2011, Effects of Te doping on the transport and thermoelectric properties of Zn4Sb3, Intermetallics, 19, 1651, 10.1016/j.intermet.2011.07.002
Nylen, 2007, Effect of metal doping on the low-temperature structural behavior of thermo electric β-Zn4Sb3, J. Solid State Chem., 180, 2603, 10.1016/j.jssc.2007.07.013
Toberer, 2007, Local structure of interstitial Zn in β-Zn4Sb3, Phys. Status Solidi Rapid Res. Lett., 1, 253, 10.1002/pssr.200701168
Nylen, 2007, Low-temperature structural transitions in the phonon-glass thermoelectric material β-Zn4Sb3: ordering of Zn interstitials and defects, Chem. Mater., 19, 834, 10.1021/cm062384j
Nylen, 2004, The structure of α-Zn4Sb3: ordering of the phonon-glass thermoelectric material β-Zn4Sb3, J. Am. Chem. Soc., 126, 16306, 10.1021/ja044980p
Izard, 2001, Discussion on the stability of the antimony-zinc binary phases, Calphad Comput. Coupling Phase Diagrams Thermochem., 25, 567, 10.1016/S0364-5916(02)00008-1
Lee, 1996, Thermodynamic assessments of the Sn-Zn and In-Zn binary systems, Calphad, 20, 471, 10.1016/S0364-5916(97)00009-6
Guo, 2014, Thermodynamic modeling of the In-Pt-Sb system, Int. J. Mater. Res., 105, 525, 10.3139/146.111072
Liu, 2003, Thermodynamic modeling of the Au-In-Sb ternary system, J. Electron. Mater., 32, 81, 10.1007/s11664-003-0240-x
Lin, 2014, Unexpected high-temperature stability of β-Zn4Sb3 opens the door to enhanced thermoelectric performance, J. Am. Chem. Soc., 136, 1497, 10.1021/ja410605f