Phase boundary mapping for high thermoelectric performance β-Zn4Sb3 in Zn–In–Sb ternary system

Materials Today Physics - Tập 37 - Trang 101201 - 2023
Shenlong Zhong1,2, Keke Liu1,2, Yusong Duan1,2, Qingjie Zhang2, Jinsong Wu2,3, Xianli Su1,2, Xinfeng Tang1,2
1Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China
2State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
3Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China

Tài liệu tham khảo

Bell, 2008, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457, 10.1126/science.1158899 DiSalvo, 1999, Thermoelectric cooling and power generation, Science (New York, N.Y.), 285, 703, 10.1126/science.285.5428.703 Tan, 2016, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116, 12123, 10.1021/acs.chemrev.6b00255 Sootsman, 2009, New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed., 48, 8616, 10.1002/anie.200900598 Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090 Tang, 2022, A comprehensive review on Bi2Te3-based thin films: thermoelectrics and beyond, Interdiscipl. Mater., 1, 88, 10.1002/idm2.12009 Snyder, 2004, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater., 3, 458, 10.1038/nmat1154 Schweika, 2007, Dumbbell rattling in thermoelectric zinc antimony, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.125501 Sofo, 1994, Optimum band gap of a thermoelectric material, Phys. Rev. B, 49, 4565, 10.1103/PhysRevB.49.4565 Wang, 2011, Optimizing thermoelectric performance of Cd-doped β-Zn4Sb3 through self-adjusting carrier concentration, Intermetallics, 19, 1823, 10.1016/j.intermet.2011.07.020 Wang, 2011, Enhancement of the thermoelectric performance of β-Zn4Sb3 by in situ nanostructures and minute Cd-doping, Acta Mater., 59, 4805, 10.1016/j.actamat.2011.04.023 Pedersen, 2009, The effect of Mg doping on the thermoelectric performance of Zn4Sb3, J. Appl. Phys., 105, 10.1063/1.3037203 Liu, 2010, Ag and Cu doping and their effects on the thermoelectric properties of β-Zn4Sb3, Phys. Rev. B, 81, 10.1103/PhysRevB.81.245215 Tang, 2012, Crystal structure and bonding characteristics of In-doped β-Zn4Sb3, J. Solid State Chem., 193, 89, 10.1016/j.jssc.2012.03.059 Tang, 2014, Crystal structure, chemical bond and enhanced performance of β-Zn4Sb3 compounds with interstitial indium dopant, J. Alloys Compd., 601, 50, 10.1016/j.jallcom.2014.02.060 Wei, 2015, Enhancement of thermoelectric figure of merit in β-Zn4Sb3 by indium doping control, Appl. Phys. Lett., 107, 10.1063/1.4931361 Carlini, 2014, Thermoelectric properties of Zn4Sb3 intermetallic compound doped with Aluminum and Silver, Intermetallics, 45, 60, 10.1016/j.intermet.2013.10.002 Liu, 2007, Thermoelectric properties of (Zn0.98M0.02) 4Sb3 (M=Al, Ga and In) at low temperatures, J. Phys. Appl. Phys., 40, 7811, 10.1088/0022-3727/40/24/033 Deng, 2017, Thermal stability and electrical transport properties of single-crystalline β-Zn4Sb3 Co-doped by Ga/Sn, J. Electron. Mater., 46, 6804, 10.1007/s11664-017-5747-7 Wang, 2012, Enhanced thermoelectric performance and thermal stability in β-Zn4Sb3 by slight Pb-doping, J. Electron. Mater., 41, 1091, 10.1007/s11664-012-1927-7 Liu, 2012, Effect of addition of Ag, in or Pb on the structure and thermoelectric performance of β-Zn4Sb3, J. Electron. Mater., 41, 2118, 10.1007/s11664-012-2139-x Li, 2009, Effects of Nb doping on thermoelectric properties of Zn4Sb3 at high temperatures, J. Mater. Res., 24, 430, 10.1557/JMR.2009.0058 Wang, 2013, Resonant distortion of electronic density of states and enhancement of thermoelectric properties of β-Zn4Sb3 by Pr doping, J. Appl. Phys., 113 Wang, 2013, Enhancement of thermopower and thermoelectric performance through resonant distortion of electronic density of states of β-Zn4Sb3 doped with Sm, Appl. Phys. Lett., 102 Pan, 2010, Effects of Ag doping on thermoelectric properties of Zn4Sb3 at low temperatures, J. Alloys Compd., 489, 228, 10.1016/j.jallcom.2009.09.058 Song, 2018, Enhanced thermoelectric performance and high-temperature thermal stability of p-type Ag-doped β-Zn4Sb3, J. Mater. Chem. A, 6, 4079, 10.1039/C7TA10859A Wang, 2012, The realization of a high thermoelectric figure of merit in Ge-substituted β-Zn4Sb3 through band structure modification, J. Mater. Chem., 22, 13977, 10.1039/c2jm30906h Zhou, 2010, Effect of Bi doping on the thermoelectric properties of Zn4Sb3, J. Alloys Compd., 503, 464, 10.1016/j.jallcom.2010.05.034 Li, 2011, Effects of Te doping on the transport and thermoelectric properties of Zn4Sb3, Intermetallics, 19, 1651, 10.1016/j.intermet.2011.07.002 Nylen, 2007, Effect of metal doping on the low-temperature structural behavior of thermo electric β-Zn4Sb3, J. Solid State Chem., 180, 2603, 10.1016/j.jssc.2007.07.013 Toberer, 2007, Local structure of interstitial Zn in β-Zn4Sb3, Phys. Status Solidi Rapid Res. Lett., 1, 253, 10.1002/pssr.200701168 Nylen, 2007, Low-temperature structural transitions in the phonon-glass thermoelectric material β-Zn4Sb3: ordering of Zn interstitials and defects, Chem. Mater., 19, 834, 10.1021/cm062384j Nylen, 2004, The structure of α-Zn4Sb3: ordering of the phonon-glass thermoelectric material β-Zn4Sb3, J. Am. Chem. Soc., 126, 16306, 10.1021/ja044980p Izard, 2001, Discussion on the stability of the antimony-zinc binary phases, Calphad Comput. Coupling Phase Diagrams Thermochem., 25, 567, 10.1016/S0364-5916(02)00008-1 Lee, 1996, Thermodynamic assessments of the Sn-Zn and In-Zn binary systems, Calphad, 20, 471, 10.1016/S0364-5916(97)00009-6 Guo, 2014, Thermodynamic modeling of the In-Pt-Sb system, Int. J. Mater. Res., 105, 525, 10.3139/146.111072 Liu, 2003, Thermodynamic modeling of the Au-In-Sb ternary system, J. Electron. Mater., 32, 81, 10.1007/s11664-003-0240-x Lin, 2014, Unexpected high-temperature stability of β-Zn4Sb3 opens the door to enhanced thermoelectric performance, J. Am. Chem. Soc., 136, 1497, 10.1021/ja410605f