Phase-Field Simulation of Solidification

Annual Review of Materials Research - Tập 32 Số 1 - Trang 163-194 - 2002
W. J. Boettinger1,2,3, James A. Warren1,2,3, C. Beckermann1,2,3, Alain Karma1,2,3
1Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, Iowa 52242;
2Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115
3Metallurgy Division, Materials Science and Engineering Laboratory, NIST, Gaithersburg, Maryland 20899;

Tóm tắt

▪ Abstract  An overview of the phase-field method for modeling solidification is presented, together with several example results. Using a phase-field variable and a corresponding governing equation to describe the state (solid or liquid) in a material as a function of position and time, the diffusion equations for heat and solute can be solved without tracking the liquid-solid interface. The interfacial regions between liquid and solid involve smooth but highly localized variations of the phase-field variable. The method has been applied to a wide variety of problems including dendritic growth in pure materials; dendritic, eutectic, and peritectic growth in alloys; and solute trapping during rapid solidification.

Từ khóa


Tài liệu tham khảo

10.1016/0025-5416(84)90199-X

10.1016/0001-6160(86)90056-8

10.1016/0025-5416(84)90201-5

10.1179/imr.1989.34.1.93

Brody HB, 1966, Trans. AIME, 263, 615

10.1007/BF02643477

10.1016/0022-0248(91)90340-B

10.1063/1.452044

10.1080/01418619608239686

10.1016/S1359-6454(97)00236-X

10.1016/S0956-716X(99)80022-3

10.1103/PhysRevA.45.7424

10.1103/PhysRevE.47.1893

10.1016/0921-5093(94)90546-0

10.1016/0956-7151(94)00285-P

10.1103/PhysRevE.48.1897

10.1016/S0378-4371(98)00364-1

10.1103/PhysRevE.53.R3017

10.1080/10586458.1994.10504577

10.1103/PhysRevE.48.2016

10.1103/PhysRevLett.72.677

10.1103/PhysRevLett.80.3308

10.1103/PhysRevE.61.3996

10.1103/PhysRevLett.87.115701

10.1006/jcph.1999.6323

10.1098/rspa.1996.0026

10.1016/0167-2789(95)00298-7

10.1016/S0167-2789(97)00226-1

10.1016/S0167-2789(00)00023-3

10.1016/S0167-2789(99)00184-0

10.1016/S0022-0248(98)00687-3

10.1016/S0022-0248(00)00333-X

10.1103/PhysRevE.62.828

10.1016/S0167-2789(99)00109-8

10.1103/PhysRevE.58.3436

10.1063/1.329867

10.1007/BF02648954

10.1103/PhysRevLett.84.1740

Bragard J, 2002, Interface Sci.

10.1103/PhysRevA.33.435

10.1103/PhysRevB.33.7867

10.1016/S1359-6454(99)00189-5

10.1103/PhysRevLett.86.5530

10.1103/PhysRevE.61.R49

10.1103/PhysRevE.63.061601

10.1103/PhysRevE.64.041602

10.1103/PhysRevA.40.6673

10.1016/S1359-6454(00)00360-8

10.1016/S0022-0248(98)01063-X

10.1007/BF02648953

10.1016/0022-0248(87)90518-5

Karma A. 2001. InEncyclopedia of Materials: Science and Technology, ed. KHJ Buschow, RW Cahn, MC Flemings, B Ilschner, EJ Kramer, S Mahajan, pp. 6873–86. Oxford: Elsevier. Vol. 7

10.1103/PhysRevE.60.6865

10.1016/S1359-6454(99)00239-6

10.2320/matertrans1960.28.1012

10.1063/1.372082

10.2355/isijinternational.40.153