Phase-Field Models for Microstructure Evolution

Annual Review of Materials Research - Tập 32 Số 1 - Trang 113-140 - 2002
Long‐Qing Chen1
1Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802;

Tóm tắt

▪ Abstract  The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials. It describes a microstructure using a set of conserved and nonconserved field variables that are continuous across the interfacial regions. The temporal and spatial evolution of the field variables is governed by the Cahn-Hilliard nonlinear diffusion equation and the Allen-Cahn relaxation equation. With the fundamental thermodynamic and kinetic information as the input, the phase-field method is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces. This paper briefly reviews the recent advances in developing phase-field models for various materials processes including solidification, solid-state structural phase transformations, grain growth and coarsening, domain evolution in thin films, pattern formation on surfaces, dislocation microstructures, crack propagation, and electromigration.

Từ khóa


Tài liệu tham khảo

10.1007/BF01011513

van der Waals JD, 1894, Z. Phys. Chem., 13, 657

10.1063/1.1744102

10.1016/0001-6160(61)90182-1

Allen SM, 1977, J. Phys., 38, C7

10.1103/RevModPhys.49.435

Gunton JD, Miguel MS, Sahni PS. 1983.The dynamics of first-order phase transitions.InPhase Transitions and Critical Phenomena, ed. C Domb, JL Lebowitz, pp. 267–466. New York: Academic

10.1103/PhysRevE.64.021604

10.1142/9789814415309_0005

Fix GJ. 1983. InFree Boundary Problems: Theory and Applications, ed. A Fasano, M Primicerio, Boston: Piman. 580 pp.

10.1103/PhysRevB.31.6119

10.1016/B0-08-043152-6/01219-5

10.2355/isijinternational.41.1076

10.1007/BF03223259

Wang YZ, Chen LQ. 1999.Simulation of microstructure evolution.InMethods in Materials Research, ed. EN Kaufmann, R Abbaschian, A Bocarsly, CL Chien, D Dollimore, et al. pp. 2a.3.1; 2a.3.23.New York: Wiley & Sons

10.1103/PhysRevB.50.15752

10.1016/0167-2789(95)00298-7

10.1098/rspa.1999.0329

10.1016/S0167-2789(00)00023-3

10.1063/1.1377855

10.1016/S1359-6454(01)00084-2

10.1016/S0022-5096(01)00023-0

10.1103/PhysRevLett.85.118

10.1103/PhysRevLett.87.045501

10.1016/S0022-0248(01)00868-5

10.1103/PhysRevE.63.036117

10.1103/PhysRevB.58.8277

10.1016/S1359-6454(00)00331-1

10.1063/1.1366370

10.1016/S0167-2789(98)00276-0

10.1063/1.372082

10.1016/S1359-6454(01)00257-9

10.1103/PhysRevA.38.434

10.1017/S095679250000053X

10.1007/978-1-4613-9211-8_1

10.1103/PhysRevB.41.9239

10.1016/S1359-6454(97)00236-X

10.1098/rsta.1997.0091

10.1016/S1359-6454(98)00015-9

10.1016/S1359-6454(98)00323-1

Devonshire AF, 1954, Philos. Mag. Suppl., 3, 85

10.1103/PhysRevB.50.5838

10.1111/j.1151-2916.1998.tb02367.x

10.1016/S0921-5093(97)00453-X

Landau LD, 1937, J. Exp. Theor. Phys., 7, 19

Khachaturyan AG, 1983, Theory of Structural Transformations in Solids.

10.1016/0167-2789(93)90120-P

10.1016/0167-2789(93)90242-S

10.1016/S0167-2789(00)00222-0

10.1016/S0167-2789(97)00177-2

10.1080/01418610110038420

10.1143/JPSJ.58.3065

Chen LQ. 2000.On the elastic field coupling in the diffuse-interface modeling of coherent microstructures.InPhase Transformations and Evolution in Materials, ed. PEA Turchi, A Gonis, pp. 209–20. Warrendale, PA: Miner. Met. Mater. Soc.

Khachaturyan AG, 1969, Sov. Phys. Solid State, 11, 118

10.1103/PhysRevB.42.980

10.1103/PhysRevE.58.4654

10.1016/S1359-6454(01)00118-5

10.1016/S1359-6454(97)00377-7

10.1088/0965-0393/9/6/303

10.1080/00150199808009157

10.1016/0956-7151(93)90359-Z

10.1111/j.1151-2916.1995.tb08245.x

10.1111/j.1151-2916.1996.tb08536.x

10.1016/S0010-4655(97)00115-X

10.1103/PhysRevE.60.3564

10.1137/0915089

10.1137/0916006

10.1103/PhysRevLett.80.3308

10.1103/PhysRevE.64.041602

10.1006/jcph.2000.6634

10.1103/PhysRevE.60.3614

Bragard J, 2001, Interface Sci.

10.1146/annurev.fluid.30.1.139

10.1039/a809628g

10.1006/jcph.1999.6332

10.1103/PhysRevE.60.1724

10.1006/jcph.1999.6323

10.1016/S1359-6454(99)00239-6

10.1103/PhysRevE.62.2480

10.1016/S0167-2789(00)00035-X

10.1098/rspa.2000.0537

10.1016/S1359-6454(99)00287-6

10.1103/PhysRevE.63.031504

10.1103/PhysRevE.63.061601

10.1103/PhysRevA.45.7424

10.1103/PhysRevE.48.1897

10.1016/0921-5093(94)90546-0

10.1016/0956-7151(94)00285-P

10.1016/S0378-4371(98)00364-1

10.1016/S0167-2789(97)00226-1

10.1103/PhysRevE.58.3436

10.1016/S0022-0248(98)00997-X

10.1103/PhysRevE.60.7186

10.1016/S0020-7683(00)00076-7

10.1016/S0375-9601(01)00489-3

10.1007/s11661-001-0353-x

10.1098/rspa.1996.0026

10.1103/PhysRevE.60.6865

10.1103/PhysRevE.61.6705

10.1016/S0167-2789(99)00184-0

10.2355/isijinternational.39.730

10.1016/S0022-0248(98)01009-4

10.1179/026708300101507398

10.2355/isijinternational.40.870

10.1016/S1359-6454(01)00184-7

10.1016/S1359-6462(00)00355-9

10.1088/0965-0393/8/6/308

10.1016/S1359-6454(00)00360-8

10.1103/PhysRevE.48.2016

10.1007/s001610050054

10.1006/jcph.1996.5585

10.1016/S0167-2789(97)00227-3

10.1103/PhysRevE.57.4323

10.1016/S0167-2789(00)00064-6

10.1016/S0167-2789(01)00229-9

10.1137/S0036139900374908

10.1103/PhysRevE.53.R3017

10.2355/isijinternational.39.149

10.1103/PhysRevLett.87.115701

10.1103/PhysRevB.37.9638

Venugopalan V, Chen LQ. 2000.3D simulation of coarsening of gamma-prime precipitates in a Ni-Al alloy.InNucleation and Growth Processes in Materials, ed. A Gonis, PEA Turchi, AJ Ardell, pp. 327–32. Boston: Mater. Res. Soc.

10.1016/S1359-6462(00)00323-7

10.1016/S1359-6454(00)00186-5

10.1103/PhysRevB.64.054104

10.1111/j.1151-2916.1993.tb06605.x

10.1103/PhysRevB.47.12182

10.1111/j.1151-2916.1995.tb08870.x

10.1016/S1359-6454(97)00455-2

10.1016/S1359-6454(00)00017-3

10.1016/S1359-6454(99)00247-5

10.1023/A:1004583324097

10.1080/01418610050132657

10.1016/S1359-6454(01)00014-3

10.1063/1.367330

10.1016/S1359-6454(96)00180-2

10.1016/S1359-6454(01)00108-2

10.1016/S1359-6454(01)00021-0

10.1016/S1359-6454(97)00241-3

10.1016/S1359-6454(97)00478-3

10.1016/S1359-6454(00)00071-9

10.1142/S0217984993001880

10.1016/S1359-6454(00)00306-2

10.1080/095008397179615

10.1016/S1359-6454(96)00221-2

10.1016/S1359-6454(96)00200-5

Krill CE, 2002, Acta Mater.

10.1137/S0036139998334895

10.1016/S0022-0248(99)00154-2

10.1016/S0218-2025(00)00046-X

10.1016/S0378-4371(98)00381-1

10.1016/S0167-2789(98)00026-8

10.1016/S0022-0248(99)00856-8

10.1103/PhysRevE.63.051605

10.1016/S0022-0248(01)00867-3

10.1103/PhysRevB.61.14275

10.1103/PhysRevB.63.184102

10.1016/S1359-6454(97)00074-8

10.1557/JMR.1999.0147

10.1016/S0927-0256(97)00158-4

Fan DN, 2001, Acta Mater.

10.1111/j.1151-2916.1996.tb08568.x

Danan F, 1997, J. Am. Ceram. Soc., 80, 1773, 10.1111/j.1151-2916.1997.tb03051.x

10.1016/S1359-6454(97)00022-0

10.1016/S1359-6462(97)00076-6

10.1016/S1359-6454(97)00101-8

Li YL, 2001, Acta Mater.

10.1016/S0022-5096(99)00038-1

10.1103/PhysRevLett.81.4444

10.1103/PhysRevLett.82.1736

10.1209/epl/i1999-00247-9

Cottrell AH. 1948.Effect of solute atoms on the behaviour of dislocations.InReport of a Conference on Strength of Solids, ed. NF Mott, pp. 30–38. London: Phys. Soc.

10.1016/0001-6160(57)90021-4

10.1016/S1359-6454(00)00331-1

Rodney D, 2001, Acta Mater.

10.1016/S1359-6454(01)00075-1

10.1080/09500830110044564

10.1080/09500830110062825

Deleted in proof

10.1103/PhysRevB.59.11037

10.1021/la9508912

10.1209/epl/i1998-00536-9

10.1063/1.168756

10.1016/S1359-0286(98)80020-X

10.1103/PhysRevB.58.R5893

10.1103/PhysRevB.60.2391

10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.3.CO;2-1

Vaithynanathan V, 2001, Phys. Rev. Lett.

10.1557/mrs2001.42

10.1016/S1359-6454(99)00189-5

10.1103/PhysRevLett.86.5530

Zhu JZ, 2001, Scripta Mater.