Pharmacometric estimation methods for aggregate data, including data simulated from other pharmacometric models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5:445–479
Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 8:553–571
Sheiner BL, Beal SL (1981) Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm 9:635–651
Sheiner LB, Beal SL (1983) Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 11:303–319
Weber S, Gelman A, Lee D et al (2018) Bayesian aggregation of average data: an application in drug development. Ann Appl Stat 12:1583–1604. https://doi.org/10.1214/17-AOAS1122
Mentre F, Mallet A, Baccar D (1997) Optimal design in random-effects regression models. Biometrika 84:429–442
Bauer RJ, Guzy S (2004) Monte carlo parametric expectation maximization (MC-PEM) method for analyzing population pharmacokinetic/pharmacodynamic data. In: D’Argenio DZ (ed) Advanced methods of pharmacokinetic and pharmacodynamic systems analysis, vol 3. Springer, US, pp 135–163
Delyon B, Lavielle M, Moulines E (1999) Convergence of a stochastic approximation version of the EM algorithm. Ann Stat 27:94–128
Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 49:1020–1038. https://doi.org/10.1016/j.csda.2004.07.002
Lavielle M (2014) Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b17203
Jöreskog KG (1970) A general method for estimating a linear structural equation system*. ETS Res Bull Ser 1970:i–41. https://doi.org/10.1002/j.2333-8504.1970.tb00783.x
Retout S, Mentré F (2003) Further developments of the Fisher information matrix in nonlinear mixed effects models with evaluation in population pharmacokinetics. J Biopharm Stat 13:209–227. https://doi.org/10.1081/BIP-120019267
Wang Y (2007) Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn 34:575–593. https://doi.org/10.1007/s10928-007-9060-6
Riviere M-K, Ueckert S, Mentré F (2016) An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models. Biostat Oxf Engl 17:737–750. https://doi.org/10.1093/biostatistics/kxw020
Niederreiter H (1988) Low-discrepancy and low-dispersion sequences. J Number Theory 30:51–70. https://doi.org/10.1016/0022-314X(88)90025-X
Fidler M, Wilkins JJ, Hooijmaijers R et al (2019) Nonlinear mixed-effects model development and simulation using nlmixr and related R open-source packages. CPT Pharmacomet Syst Pharmacol 8:621–633. https://doi.org/10.1002/psp4.12445
Foracchia M, Hooker A, Vicini P, Ruggeri A (2004) POPED, a software for optimal experiment design in population kinetics. Comput Methods Programs Biomed 74:29–46. https://doi.org/10.1016/S0169-2607(03)00073-7
Nyberg J, Bazzoli C, Ogungbenro K et al (2015) Methods and software tools for design evaluation in population pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol 79:6–17. https://doi.org/10.1111/bcp.12352
Chenel M, Bouzom F, Aarons L, Ogungbenro K (2008) Drug-drug interaction predictions with PBPK models and optimal multiresponse sampling time designs: application to midazolam and a phase I compound. Part 1: comparison of uniresponse and multiresponse designs using PopDes. J Pharmacokinet Pharmacodyn 35:635–659. https://doi.org/10.1007/s10928-008-9104-6
Dumont C, Mentré F, Gaynor C et al (2013) Optimal sampling times for a drug and its metabolite using SIMCYP(®) simulations as prior information. Clin Pharmacokinet 52:43–57. https://doi.org/10.1007/s40262-012-0022-9
Thai H-T, Mazuir F, Cartot-Cotton S, Veyrat-Follet C (2015) Optimizing pharmacokinetic bridging studies in paediatric oncology using physiologically-based pharmacokinetic modelling: application to docetaxel. Br J Clin Pharmacol 80:534–547. https://doi.org/10.1111/bcp.12702
Hooker AC, Foracchia M, Dodds MG, Vicini P (2003) An evaluation of population D-optimal designs via pharmacokinetic simulations. Ann Biomed Eng 31:98–111