Pharmacological Upregulation of Microglial Lipid Droplet Alleviates Neuroinflammation and Acute Ischemic Brain Injury
Tóm tắt
Lipid droplets (LDs) were reported to play an important role in the modulation of inflammation and various cellular processes among multiple cell types. However, LDs accumulation, its function and mechanisms of its formation during ischemic stroke remained poorly-identified. In this study, we observed increased LDs accumulation in microglia at the acute stage of ischemic stroke by immunofluorescence and flow cytometry. Transcriptomic analysis indicated that microglia accumulated with LDs were associated with inflammation and phagocytosis. Both inflammatory activation and phagocytosis of tissue debris in microglia could contribute to LDs formation. Moreover, through specific LDs depletion and overload experiments by pharmacological approaches, we proposed that LDs was critical for the maintenance of anti-inflammatory properties of microglia. Furthermore, Atglistatin, a specific adipose triglyceride lipase (ATGL) inhibitor, was shown to prevent proinflammatory cytokines production in primary microglia through decreased LDs lipolysis. After Atglistatin treatment, middle cerebral artery occlusion (MCAO) mice showed decreased infarct volume and improved neurobehavioral performance at the acute stage of stroke. Our findings provided a biological basis for microglial LDs regulation as a potential therapeutic strategy for acute ischemic stroke and uncovered the neuroprotective role of Atglistatin in the treatment of MCAO mice.
Từ khóa
Tài liệu tham khảo
den Brok, M.H., T.K. Raaijmakers, E. Collado-Camps, and G.J. Adema. 2018. Lipid Droplets as Immune Modulators in Myeloid Cells. Trends in immunology 39 (5): 380–392. https://doi.org/10.1016/j.it.2018.01.012.
Olzmann, J.A., and P. Carvalho. 2019. Dynamics and functions of lipid droplets. Nature reviews Molecular cell biology 20 (3): 137–155. https://doi.org/10.1038/s41580-018-0085-z.
Muliyil, S., Levet, C., Düsterhöft, S., Dulloo, I., Cowley, S.A., Freeman, M. 2020. ADAM17-triggered TNF signalling protects the ageing Drosophila retina from lipid droplet-mediated degeneration. The EMBO journal 39 (17):e104415. https://doi.org/10.15252/embj.2020104415.
Liu, L., K. Zhang, H. Sandoval, S. Yamamoto, M. Jaiswal, E. Sanz, Z. Li, J. Hui, B.H. Graham, A. Quintana, and H.J. Bellen. 2015. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160 (1–2): 177–190. https://doi.org/10.1016/j.cell.2014.12.019.
Jarc, E., and T. Petan. 2020. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 169: 69–87. https://doi.org/10.1016/j.biochi.2019.11.016.
Jia, J., Yang, L., Chen, Y., Zheng, L., Chen, Y., Xu, Y., Zhang, M. 2021. The Role of Microglial Phagocytosis in Ischemic Stroke. Frontiers in immunology 12:790201. https://doi.org/10.3389/fimmu.2021.790201.
Marschallinger, J., T. Iram, M. Zardeneta, S.E. Lee, B. Lehallier, M.S. Haney, J.V. Pluvinage, V. Mathur, O. Hahn, D.W. Morgens, J. Kim, J. Tevini, T.K. Felder, H. Wolinski, C.R. Bertozzi, M.C. Bassik, L. Aigner, and T. Wyss-Coray. 2020. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nature neuroscience 23 (2): 194–208. https://doi.org/10.1038/s41593-019-0566-1.
Marschallinger, J., T. Iram, M. Zardeneta, S.E. Lee, B. Lehallier, M.S. Haney, J.V. Pluvinage, V. Mathur, O. Hahn, D.W. Morgens, J. Kim, J. Tevini, T.K. Felder, H. Wolinski, C.R. Bertozzi, M.C. Bassik, L. Aigner, and T. Wyss-Coray. 2020. Author Correction: Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nature neuroscience 23 (2): 294. https://doi.org/10.1038/s41593-020-0595-9.
Marschallinger, J., T. Iram, M. Zardeneta, S.E. Lee, B. Lehallier, M.S. Haney, J.V. Pluvinage, V. Mathur, O. Hahn, D.W. Morgens, J. Kim, J. Tevini, T.K. Felder, H. Wolinski, C.R. Bertozzi, M.C. Bassik, L. Aigner, and T. Wyss-Coray. 2020. Author Correction: Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nature neuroscience 23 (10): 1308. https://doi.org/10.1038/s41593-020-0682-y.
Gouna, G., C. Klose, M. Bosch-Queralt, L. Liu, O. Gokce, M. Schifferer, L. Cantuti-Castelvetri, M. Simons. 2021. TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. The Journal of experimental medicine 218 (10). https://doi.org/10.1084/jem.20210227.
Yao, X.Q., J.Y. Chen, Z.H. Yu, Z.C. Huang, R. Hamel, Y.Q. Zeng, Z.P. Huang, K.W. Tu, J.H. Liu, Y.M. Lu, Z.T. Zhou, S. Pluchino, Q.A. Zhu, J.T. Chen. 2022. Bioinformatics analysis identified apolipoprotein E as a hub gene regulating neuroinflammation in macrophages and microglia following spinal cord injury. Frontiers in immunology 13: 964138. https://doi.org/10.3389/fimmu.2022.964138.
Zambusi, A., K.T. Novoselc, S. Hutten, S. Kalpazidou, C. Koupourtidou, R. Schieweck, S. Aschenbroich, L. Silva, A.S. Yazgili, F. van Bebber, B. Schmid, G. Möller, C. Tritscher, C. Stigloher, C. Delbridge, S. Sirko, Z.I. Günes, S. Liebscher, J. Schlegel, H. Aliee, F. Theis, S. Meiners, M. Kiebler, D. Dormann, and J. Ninkovic. 2022. TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nature neuroscience 25 (12): 1608–1625. https://doi.org/10.1038/s41593-022-01199-y.
Victor, M.B., N. Leary, X. Luna, H.S. Meharena, A.N. Scannail, P.L. Bozzelli, G. Samaan, M.H. Murdock, D. von Maydell, A.H. Effenberger, O. Cerit, H.L. Wen, L. Liu, G. Welch, M. Bonner, and L.H. Tsai. 2022. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 29 (8): 1197-1212.e1198. https://doi.org/10.1016/j.stem.2022.07.005.
Brekk, O.R., J.R. Honey, S. Lee, P.J. Hallett, and O. Isacson. 2020. Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance. Proceedings of the National Academy of Sciences of the United States of America 117 (44): 27646–27654. https://doi.org/10.1073/pnas.2003021117.
Claes, C., E.P. Danhash, J. Hasselmann, J.P. Chadarevian, S.K. Shabestari, W.E. England, T.E. Lim, J.L.S. Hidalgo, R.C. Spitale, H. Davtyan, and M. Blurton-Jones. 2021. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer’s disease. Molecular neurodegeneration 16 (1): 50. https://doi.org/10.1186/s13024-021-00473-0.
Deng, S., S. Shu, L. Zhai, S. Xia, X. Cao, H. Li, X. Bao, P. Liu, Y. Xu. 2023. Optogenetic Stimulation of mPFC Alleviates White Matter Injury-Related Cognitive Decline after Chronic Ischemia through Adaptive Myelination. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 10 (5): e2202976. https://doi.org/10.1002/advs.202202976.
Zhou, T., Y. Zheng, L. Sun, S.R. Badea, Y. Jin, Y. Liu, A.J. Rolfe, H. Sun, X. Wang, Z. Cheng, Z. Huang, N. Zhao, X. Sun, J. Li, J. Fan, C. Lee, T.L. Megraw, W. Wu, G. Wang, and Y. Ren. 2019. Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury. Nature neuroscience 22 (3): 421–435. https://doi.org/10.1038/s41593-018-0324-9.
Wan, Y., B. Feng, Y. You, J. Yu, C. Xu, H. Dai, B.D. Trapp, P. Shi, Z. Chen, W. Hu. 2020. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Reports 33 (5): 108346. https://doi.org/10.1016/j.celrep.2020.108346.
Stalder, M., T. Deller, M. Staufenbiel, and M. Jucker. 2001. 3D-Reconstruction of microglia and amyloid in APP23 transgenic mice: No evidence of intracellular amyloid. Neurobiology of aging 22 (3): 427–434. https://doi.org/10.1016/s0197-4580(01)00209-3.
Takahara, S., M. Ferdaoussi, N. Srnic, Z.H. Maayah, S. Soni, A.K. Migglautsch, R. Breinbauer, E.E. Kershaw, and J.R.B. Dyck. 2021. Inhibition of ATGL in adipose tissue ameliorates isoproterenol-induced cardiac remodeling by reducing adipose tissue inflammation. American journal of physiology Heart and circulatory physiology 320 (1): H432-h446. https://doi.org/10.1152/ajpheart.00737.2020.
Arbaizar-Rovirosa, M., J. Pedragosa, J.J. Lozano, C. Casal, A. Pol, M. Gallizioli, A.M. Planas. 2023. Aged lipid-laden microglia display impaired responses to stroke. EMBO molecular medicine 15 (2): e17175. https://doi.org/10.15252/emmm.202217175.
Zimmermann, R., J.G. Strauss, G. Haemmerle, G. Schoiswohl, R. Birner-Gruenberger, M. Riederer, A. Lass, G. Neuberger, F. Eisenhaber, A. Hermetter, and R. Zechner. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science (New York, NY) 306 (5700): 1383–1386. https://doi.org/10.1126/science.1100747.
Singh, R., S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A.M. Cuervo, and M.J. Czaja. 2009. Autophagy regulates lipid metabolism. Nature 458 (7242): 1131–1135. https://doi.org/10.1038/nature07976.
Liu, K., and M.J. Czaja. 2013. Regulation of lipid stores and metabolism by lipophagy. Cell death and differentiation 20 (1): 3–11. https://doi.org/10.1038/cdd.2012.63.
Robichaud, S., G. Fairman, V. Vijithakumar, E. Mak, D.P. Cook, A.R. Pelletier, S. Huard, B.C. Vanderhyden, D. Figeys, M. Lavallée-Adam, K. Baetz, and M. Ouimet. 2021. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy 17 (11): 3671–3689. https://doi.org/10.1080/15548627.2021.1886839.
Schott, M.B., S.G. Weller, R.J. Schulze, E.W. Krueger, K. Drizyte-Miller, C.A. Casey, and M.A. McNiven. 2019. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. The Journal of cell biology 218 (10): 3320–3335. https://doi.org/10.1083/jcb.201803153.
Ioannou, M.S., J. Jackson, S.H. Sheu, C.L. Chang, A.V. Weigel, H. Liu, H.A. Pasolli, C.S. Xu, S. Pang, D. Matthies, H.F. Hess, J. Lippincott-Schwartz, and Z. Liu. 2019. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell 177 (6): 1522-1535.e1514. https://doi.org/10.1016/j.cell.2019.04.001.
Montani, L. 2021. Lipids in regulating oligodendrocyte structure and function. Seminars in cell & developmental biology 112: 114–122. https://doi.org/10.1016/j.semcdb.2020.07.016.
Kurisu, K., Z. Zheng, J.Y. Kim, J. Shi, A. Kanoke, J. Liu, C.L. Hsieh, and M.A. Yenari. 2019. Triggering receptor expressed on myeloid cells-2 expression in the brain is required for maximal phagocytic activity and improved neurological outcomes following experimental stroke. Journal of cerebral blood flow and metabolism : Official journal of the International Society of Cerebral Blood Flow and Metabolism 39 (10): 1906–1918. https://doi.org/10.1177/0271678x18817282.
Beuker, C., D. Schafflick, J.K. Strecker, M. Heming, X. Li, J. Wolbert, A. Schmidt-Pogoda, C. Thomas, T. Kuhlmann, I. Aranda-Pardos, and N AG, Kumar PA, Werner Y, Kilic E, Hermann DM, Wiendl H, Stumm R, Meyer Zu Hörste G, Minnerup J,. 2022. Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nature communications 13 (1): 945. https://doi.org/10.1038/s41467-022-28593-1.
Ryan, C.B., J.S. Choi, H. Al-Ali, J.K. Lee. 2022. Myelin and non-myelin debris contribute to foamy macrophage formation after spinal cord injury. Neurobiology of disease 163: 105608. https://doi.org/10.1016/j.nbd.2021.105608.
Navia-Pelaez, J.M., S.H. Choi, L. Dos Santos Aggum Capettini, Y. Xia, A. Gonen, C. Agatisa-Boyle, L. Delay G. Gonçalves Dos Santos, G.F. Catroli, J. Kim, J.W. Lu, B. Saylor, H. Winkels, C.P. Durant, Y. Ghosheh, G. Beaton, K. Ley, I. Kufareva, M. Corr, T.L Yaksh, Y.I Miller. 2021. Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. The Journal of experimental medicine 218 (7). https://doi.org/10.1084/jem.20202059.
Machlovi, S.I., S.M. Neuner, B.M. Hemmer, R. Khan, Y. Liu, M. Huang, J.D. Zhu, J.M. Castellano, D. Cai, E. Marcora, A.M. Goate. 2022. APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiology of disease 164: 105615. https://doi.org/10.1016/j.nbd.2022.105615.
Xu, Y., N.E. Propson, S. Du, W. Xiong, H. Zheng. 2021. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proceedings of the National Academy of Sciences of the United States of America 118 (27). https://doi.org/10.1073/pnas.2023418118.
Haemmerle, G., T. Moustafa, G. Woelkart, S. Büttner, A. Schmidt, T. van de Weijer, M. Hesselink, D. Jaeger, P.C. Kienesberger, K. Zierler, R. Schreiber, T. Eichmann, D. Kolb, P. Kotzbeck, M. Schweiger, M. Kumari, S. Eder, G. Schoiswohl, N. Wongsiriroj, N.M. Pollak, F.P. Radner, K. Preiss-Landl, T. Kolbe, T. Rülicke, B. Pieske, M. Trauner, A. Lass, R. Zimmermann, G. Hoefler, S. Cinti, E.E. Kershaw, P. Schrauwen, F. Madeo, B. Mayer, and R. Zechner. 2011. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nature medicine 17 (9): 1076–1085. https://doi.org/10.1038/nm.2439.
Wahli, W., and L. Michalik. 2012. PPARs at the crossroads of lipid signaling and inflammation. Trends in endocrinology and metabolism: TEM 23 (7): 351–363. https://doi.org/10.1016/j.tem.2012.05.001.
Ong, K.T., M.T. Mashek, S.Y. Bu, A.S. Greenberg, and D.G. Mashek. 2011. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology (Baltimore, MD) 53 (1): 116–126. https://doi.org/10.1002/hep.24006.
Listenberger, L.L., X. Han, S.E. Lewis, S. Cases, R.V. Farese Jr., D.S. Ory, and J.E. Schaffer. 2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proceedings of the National Academy of Sciences of the United States of America 100 (6): 3077–3082. https://doi.org/10.1073/pnas.0630588100.
Monson, E.A., A.M. Trenerry, J.L Laws, J.M. Mackenzie, K.J. Helbig. 2021. Lipid droplets and lipid mediators in viral infection and immunity. FEMS microbiology reviews 45 (4). https://doi.org/10.1093/femsre/fuaa066.
Ackerman, D., S. Tumanov, B. Qiu, E. Michalopoulou, M. Spata, A. Azzam, H. Xie, M.C. Simon, and J.J. Kamphorst. 2018. Triglycerides Promote Lipid Homeostasis during Hypoxic Stress by Balancing Fatty Acid Saturation. Cell reports 24 (10): 2596-2605.e2595. https://doi.org/10.1016/j.celrep.2018.08.015.
Gartung, A., J. Zhao, S. Chen, E. Mottillo, G.C. VanHecke, Y.H. Ahn, K.R. Maddipati, A. Sorokin, J. Granneman, and M.J. Lee. 2016. Characterization of Eicosanoids Produced by Adipocyte Lipolysis: IMPLICATION OF CYCLOOXYGENASE-2 IN ADIPOSE INFLAMMATION. The Journal of biological chemistry 291 (31): 16001–16010. https://doi.org/10.1074/jbc.M116.725937.
Zhang, W., E.P. Mottillo, J. Zhao, A. Gartung, G.C. VanHecke, J.F. Lee, K.R. Maddipati, H. Xu, Y.H. Ahn, R.L. Proia, J.G. Granneman, and M.J. Lee. 2014. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. The Journal of biological chemistry 289 (46): 32178–32185. https://doi.org/10.1074/jbc.M114.601096.
Mottillo, E.P., and X.J. Shen. 1801. Granneman JG (2010) beta3-adrenergic receptor induction of adipocyte inflammation requires lipolytic activation of stress kinases p38 and JNK. Biochimica et biophysica acta 9: 1048–1055. https://doi.org/10.1016/j.bbalip.2010.04.012.
Aflaki, E., N.A. Balenga, P. Luschnig-Schratl, H. Wolinski, S. Povoden, P.G. Chandak, J.G. Bogner-Strauss, S. Eder, V. Konya, S.D. Kohlwein, A. Heinemann, and D. Kratky. 2011. Impaired Rho GTPase activation abrogates cell polarization and migration in macrophages with defective lipolysis. Cellular and molecular life sciences : CMLS 68 (23): 3933–3947. https://doi.org/10.1007/s00018-011-0688-4.
Dichlberger, A., S. Schlager, K. Maaninka, W.J. Schneider, and P.T. Kovanen. 2014. Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells. Journal of lipid research 55 (12): 2471–2478. https://doi.org/10.1194/jlr.M048553.
Schlager, S., M. Goeritzer, K. Jandl, R. Frei, N. Vujic, D. Kolb, H. Strohmaier, J. Dorow, T.O. Eichmann, A. Rosenberger, A. Wölfler, A. Lass, E.E. Kershaw, U. Ceglarek, A. Dichlberger, A. Heinemann, and D. Kratky. 2015. Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis. Journal of leukocyte biology 98 (5): 837–850. https://doi.org/10.1189/jlb.3A0515-206R.
van Dierendonck, X., F. Vrieling, L. Smeehuijzen, L. Deng, J.P. Boogaard, C.A. Croes, L. Temmerman, S. Wetzels, E. Biessen, S. Kersten, R. Stienstra. 2022. Triglyceride breakdown from lipid droplets regulates the inflammatory response in macrophages. Proceedings of the National Academy of Sciences of the United States of America 119 (12): e2114739119. https://doi.org/10.1073/pnas.2114739119.
Durán-Laforet, V., C. Peña-Martínez, A. García-Culebras, L. Alzamora, M.A. Moro, I. Lizasoain. 2021. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacology & therapeutics 228: 107933. https://doi.org/10.1016/j.pharmthera.2021.107933.
Carr, R.M., and R.S. Ahima. 2016. Pathophysiology of lipid droplet proteins in liver diseases. Experimental cell research 340 (2): 187–192. https://doi.org/10.1016/j.yexcr.2015.10.021.
Sztalryd, C., D.L. Brasaemle. 2017. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochimica et biophysica acta Molecular and cell biology of lipids 1862 (10 Pt B): 1221–1232. https://doi.org/10.1016/j.bbalip.2017.07.009.
Su, W., Y. Wang, X. Jia, W. Wu, L. Li, X. Tian, S. Li, C. Wang, H. Xu, J. Cao, Q. Han, S. Xu, Y. Chen, Y. Zhong, X. Zhang, P. Liu, J. Gustafsson, and Y. Guan. 2014. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proceedings of the National Academy of Sciences of the United States of America 111 (31): 11437–11442. https://doi.org/10.1073/pnas.1410741111.