Pharmacokinetics of Antibacterial Agents in the CSF of Children and Adolescents

Amanda K. Sullins1, Susan M. Abdel‐Rahman2
1Children’s Mercy Hospitals & Clinics
2Division of Clinical Pharmacology and Medical Toxicology, Children’s Mercy Hospitals and Clinics, 2401 Gillham Rd, Kansas City, MO, 64108, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Somand D, Meurer W. Central nervous system infections. Emerg Med Clin North Am. 2009;27:89–100.

Ziai WC, Lewin JJ 3rd. Update in the diagnosis and management of central nervous system infections. Neurol Clin. 2008;26:427–68.

Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11–28.

Overturf GD. Defining bacterial meningitis and other infections of the central nervous system. Pediatr Crit Care Med. 2005;6(Suppl.):S14–8.

Sáez-Llorens X. Brain abscess in children. Semin Pediatr Infect Dis. 2003;14(2):108–14.

Duhaime AC. Evaluation and management of shunt infections in children with hydrocephalus. Clin Pediatr. 2006;45:705–13.

Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.

Scheld MW. Drug delivery to the central nervous system. Rev Infect Dis. 1989;11(7):S1669–90.

Andes DR, Craig WA. Pharmacokinetics and pharmacodynamics of antibiotics in meningitis. Infect Dis Clin N Am. 1999;13(3):595–618.

Nau R, Prange HW, Muth P, et al. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agent Chemother. 1993;37(7):1518–24.

Chavez-Bueno S, McCracken GH Jr. Bacterial meningitis in children. Pediatr Clin N Am. 2005;52:795–810.

Nagata Y, Kusuhara H, Endou H, et al. Expression and functional characterization of rat organic anion transporter 3 (rOAT3) in the choroid plexus. Mol Pharmacol. 2002;61(5):982–8.

Kikuchi R, Kusuhara H, Sugiyama D, et al. Contribution of organic anion transporter 3 (S/c22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood-brain barrier. J Pharmacol Exp Ther. 2003;306(1):51–8.

Ocheltree SM, Shen H, Hu Y, et al. Role and relevance of peptide transporter 2 (PEPT2) in the kidney and choroid plexus: in vivo studies with glycylsarcosine in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther. 2005;315(1):240–7.

Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (p-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA. 1989;86:695–8.

Agunod M, Yamaguchi N, Lopez R, et al. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis. 1969;14:400–14.

Huang NN, High RH. Comparison of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. J Pediatr. 1953;42:657–8.

Berseth CL. Gestational evolution of small intestine motility in preterm and term infants. J Pediatr. 1989;115(4):646–51.

Gupta M, Brans YW. Gastric retention in neonates. Pediatrics. 1978;62:26–9.

Heimann G. Enteral absorption and bioavailability in children in relation to age. Eur J Clin Pharmacol. 1980;18(1):43–50.

Poley JR, Dower JC, Owen CA Jr, et al. Bile acids in infants and children. J Lab Clin Med. 1964;63:638–46.

Suchy FJ, Balistreri WF, Heubi JE, et al. Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology. 1981;80(5 Pt 1):1037–41.

Kearns GL, Bradley JS, Jacobs RF, et al. Single-dose pharmacokinetics of a pleconaril in neonates. Pediatr Infect Dis J. 2000;19:833–9.

Shankaran S, Kauffman RE. Use of chloramphenicol palmitate in neonates. J Pediatr. 1984;105(1):113–6.

Centers for Disease Control and Prevention (CDC). Infant feeding practices study II. http://www.cdc.gov/ifps/index.htm . Accessed 28 Oct 2010.

Ogihara T, Kano T, Wagatsuma T, et al. Oseltamivir (Tamiflu) is a substrate of peptide transporter 1. Drug Metab Dispos. 2009;37:1676–81.

Friis-Hansen B. Water distribution in the foetus and newborn infant. Acta Paediatr Scand Suppl. 1983;305:7–11.

Siber GR, Echeverria P, Smith AL, et al. Pharmacokinetics of gentamicin in children and adults. J Infect Dis. 1975;132(6):637–51.

Kearns G, Abdel-Rahman S, Blumer J, et al. Single dose pharmacokinetics of linezolid in infants and children. Pediatr Infect Dis J. 2000;19:1178–84.

Fredholm BB, Rane A, Persson B. Diphenylhydantoin binding to proteins in plasma and its dependence on free fatty acid and bilirubin concentration in dogs and newborn infants. Pediatr Res. 1975;9(1):26–30.

Windorfer A, Kuenzer W, Urbanek R. The influence of age on the activity of acetylsalicylic acid esterase and protein salicylate binding. Eur J Clin Pharmacol. 1974;7(3):227–31.

Nau H. Valproic acid in the perinatal period: decreased maternal serum protein binding results in fetal accumulation and neonatal displacement of the drug and some metabolites. J Pediatr. 1984;104(4):627–34.

Kanakoudi F, Drossou V, Tzimouli V, et al. Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clin Chem. 1995;41(4):605–8.

Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984;104:849–54.

John TR, Moore WM, Jeffries JE, editors. Children are different: developmental physiology. 2nd ed. Columbus: Ross Laboratories; 1978.

Stevens JC, Hines RN, Chungang GU, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307:573–82.

LaCroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247:625–34.

Kearns GL, Jungbluth GL, Abdel-Rahman SM, et al. Pediatric Pharmacology Research Unit Network. Impact of ontogeny on linezolid disposition in neonates and infants. Clin Pharmacol Ther. 2003;74(5):413–22.

Martin E, Koup JR, Paravicini U, et al. Pharmacokinetics of ceftriaxone in neonates and infants with meningitis. J Pediatr. 1984;105:475–81.

Chalmers JP, Tiller DJ. Effects of treatment on the mortality rate in septicemia. BMJ. 1969;2:338–41.

Craven DE, Kollisch NR, Hsieh CR, et al. Vancomycin treatment of bacteremia caused by oxacillin-resistant Staphylococcus aureus: comparison with beta-lactam antibiotic treatment of bacteremia caused by oxacillin-sensitive Staphylococcus aureus. J Infect Dis. 1983;147:137–43.

Flick MR, Cluff LE. Pseudomonas bacteremia: review of 108 cases. Am J Med. 1976;60:501–8.

Lorian V, Burns L. Predictive value of susceptibility tests for the outcome of antibacterial therapy. J Antimicrob Chemother. 1990;25:175–81.

McCabe WR, Jackson GG. Gram-negative bacteremia: clinical and therapeutic observations. Arch Intern Med. 1962;110:856–64.

Anderson ET, Young LS, Hewitt WL. Simultaneous antibiotic levels in “breakthrough” gram-negative rod bacteremia. Am J Med. 1976;61:493–7.

Bryan CS, Reynolds KL, Brenner ER. Analysis of 1,186 episodes of gram-negative bacteremia in non-university hospitals: the effects of antimicrobial therapy. Rev Infect Dis. 1983;5:629–38.

Freid MA, Vosti KL. The importance of underlying disease in patients with gram-negative bacteremia. Arch Intern Med. 1968;121(5):418–23.

Isenberg HD. Clinical evaluation of laboratory guidance to antibiotic therapy. Health Lab Sci. 1967;4:164–80.

Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. IV: re-evaluation of clinical features and treatment in 612 patients. Am J Med. 1980;68:344–55.

Eagle H, Fleishman R, Levy M. Continuous vs. discontinuous therapy with penicillin: the effect of the interval between injections on therapeutic efficacy. N Engl J Med. 1953;248:481–8.

White CA, Toothaker RD. Influence of ampicillin elimination half-life on in-vitro bactericidal effect. J Antimicrob Chemother. 1985;15(Suppl. A):257–60.

Soriano F, Garcia-Corbeira P, Ponte C, et al. Correlation of pharmacodynamic parameters of five beta-lactam antibiotics with therapeutic efficacies in an animal model. Antimicrob Agents Chemother. 1996;40:2686–90.

Zinner SH, Dudley MN, Gilbert D, et al. Effect of dose and schedule on cefoperazone pharmacodynamics in an in vitro model of infection in a neutropenic host. Am J Med. 1988;85(Suppl. 1A):56–8.

Flückiger U, Segessenmann C, Gerber AU. Integration of pharmacokinetics and pharmacodynamics of imipenem in a human-adapted mouse model. Antimicrob Agents Chemother. 1991;35(9):1905–10.

Scaglione F, Demartini G, Dugnani, et al. In vitro comparative dynamics of modified-release clarithromycin and of azithromycin. Chemotherapy. 2000;46:342–52.

Azoulay-Dupuis E, Vallee E, Bedos JP, et al. Prophylactic and therapeutic activities of azithromycin in a mouse model of pneumococcal pneumonia. Antimicrob Agents Chemother. 1991;35:1024–8.

van Ogtrop ML, Andes D, Stamstand TJ, et al. In vivo pharmacodynamic activities of two glycylclines (GAR-936 and WAY 152 288) against various gram positive and gram negative bacteria. Antimicrob Agents Chemother. 2000;44(4):943–9.

Löwdin E, Odenholt I, Cars O. In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and staphylococcus epidermidis. Antimicrob Agents Chemother. 1998;42(10):2739–44.

Gustafsson I, Hjelm E, Cars O. In vitro pharmacodynamics of the new ketolides HMR 3004 and HMR 3647 (telithromycin) against Chlamydia pneumoniae. Antimicrob Agents Chemother. 2000;44:1846–9.

Andes D, Van Ogtrop ML, Peng J, et al. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002;46:3484–9.

Craig WA. Pharmacokinetics/pharmacodynamic parameters: rationale for antibacterial dosing in mice and men. Clin Infect Dis. 1998;26:1–12.

Eagle H, Fleischman R, Musselman AD. The bactericidal action of penicillin in vivo: the participation of the host, and slow recovery of the surviving organisms. Ann Intern Med. 1950;33:544–71.

Jawetz E. Dynamics of the action of penicillin in experimental animals; observations on mice. Arch Med Intern. 1946;77:1–15.

Andes D, Marchillo K, Lowther J, et al. In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:1187–92.

Daikos GL, Lolans VT, Jackson GG. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother. 1991;35:117–23.

Sörberg M, Hanberger H, Nilsson M, et al. Pharmacodynamic effects of antibiotics and acid pump inhibitors on helicobacter pylori. Antimicrob Agents Chemother. 1997;41(10):2218–23.

Vance-Bryan K, Larson TA, Rotschafer JC, et al. Investigation of the early killing of Staphylococcus aureus by daptomycin by using an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 1992;36:2334–7.

Daikos GL, Jackson GG, Lolans VT, et al. Adaptive resistance to aminoglycosides antibiotics from first-exposure down-regulation. J Infect Dis. 1990;162(2):414–20.

Leggett JE, Ebert S, Fantin B, et al. Comparative dose-effect relations at several dosing intervals for beta-lactam, aminoglycoside and quinolone antibiotics against gram-negative bacilli in murine thigh-infection and pneumonitis models. Scand J Infect Dis Suppl. 1991;74:179–84.

Moore RD, Smith CR, Lietman PS. The association of aminoglycoside plasma levels with mortality in patients with gram negative bacteremia. J Infect Dis. 1984;149:443–8.

Noone P, Parsons T, Pattison JR, et al. Experience in monitoring gentamicin therapy during treatment of serious gram negative sepsis. BMJ. 1974;1:477–81.

Vogelman B, Gudmundsson S, Leggett J, et al. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988;158:831–47.

Lacy MK, Lu W, Xu X, et al. Pharmacodynamic comparisons of levofloxacin, ciprofloxacin and ampicillin against Streptococcus pneumoniae in an in vitro model of infection. Antimicrob Agents Chemother. 1999;43:672–7.

Andes DR, Craig WA. Pharmacodynamics of fluoroquinolones in experimental models of endocarditis. Clin Infect Dis. 1998;27:47–50.

Fantin B, Leclercq R, Mérle Y, et al. Critical influence of resistance to streptogramin B-type antibiotics on activity of RP 59500 (quinupristin-dalfopristin) in experimental endocarditis due to Staphylococcus aureus. Antimicrob Agents Chemother. 1995;39(2):400–5.

Jayaram R, Gaonkar S, Kaur P, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47:2118–24.

Jayaram R, Shandil RK, Gaonkar S, et al. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2004;48:2951–7.

Drusano GL, Preston SL, Hardalo C, et al. Use of preclinical data for selection of a phase II/III dose for evernimicin and identification of a preclinical MIC breakpoint. Antimicrob Agents Chemother. 2001;45:13–22.

Andes D, Marchillo K, Conklin R, et al. Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis. Antimicrob Agents Chemother. 2004;48:137–42.

Andes D, Marchillo K, Stamstad T, et al. In vivo pharmacodynamics of a new triazole, ravuconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:1193–9.

Andes D, Marchillo K, Stamstad T, et al. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:3165–9.

Lorian V. Some effects of subinhibitory concentrations of antibiotics on bacteria. Bull N Y Acad Med. 1975;51:1046–55.

Odenholt-Tornqvist I, Lowdin E, Cars O. Pharmacodynamic effects of subinhibitory concentrations of b-lactam antibiotics in vitro. Antimicrob Agents Chemother. 1991;35:1834–9.

Odenholt-Tornqvist I, Lowdin E, Cars O. Postantibiotic sub-MIC effect of vancomycin, roxithromycin, sparfloxacin and amikacin. Antimicrob Agents Chemother. 1992;36:1852–8.

Walterspiel JN, Ashkenazi S, Morrow AL, et al. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I. Infection. 1992;20:25–9.

Yoh M, Yamamoto K, Honda T, et al. Effects of lincomycin and tetracycline on production and properties of enterotoxins of enterotoxigenic Escherichia coli. Infect Immun. 1983;42:778–82.

Yoh M, Frimpong EK, Voravuthikunchai SP, et al. Effect of subinhibitory concentrations of antimicrobial agents (quinolones and macrolide) on the production of verotoxin by enterohemorrhagic Escherichia coli O157: H7. Can J Microbiol. 1999;45:732–9.

Levner M, Weiner FP, Rubin BA. Induction of Escherichia coli and Vibrio cholerae enterotoxins by an inhibitor of protein synthesis. Infect Immun. 1977;15:132–7.

Kernodle DS, McGraw PA, Barg NL, et al. Growth of Staphylococcus aureus with nafcillin in vitro induces alpha-toxin production and increases the lethal activity of sterile broth filtrates in a murine model. J Infect Dis. 1995;172:410–9.

Ohlsen K, Ziebuhr W, Koller KP, et al. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 1998;42:2817–23.

Bisognano C, Vaudaux PE, Lew DP, et al. Increased expression of fibronectin-binding proteins by fluoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother. 1997;41:906–13.

Bisognano C, Vaudaux P, Rohner P, et al. Induction of fibronectin-binding proteins and increased adhesion of quinolone-resistant Staphylococcus aureus by subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother. 2000;44:1428–37.

Bigger JW. The bactericidal action of penicillin on Staphylococcus pyogenes. Ir J Med Sci. 1944;227:533–68.

Eagle H. The recovery of bacteria from the toxic effects of penicillin. J Clin Invest. 1949;28:832–6.

Craig WA, Gudmundsson S. Postantibiotic effect. In: Lorian V, editor. Antibiotics in laboratory medicine. 4th ed. Baltimore: Williams & Wilkins; 1996. p. 296–329.

Parker RF, Luse S. The action of penicillin on staphylococcus: further observations on the effect of a short exposure. J Bacteriol. 1948;56:75–84.

Schmidt LH, Walley A, Larson RD. The influence of the dosage regimen on the therapeutic activity of penicillin G. J Pharmacol Exp Ther. 1949;96:258–68.

Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl. 1991;74:63–70.

Hanberger H, Nilsson LE, Maller R, et al. Pharmacodynamics of beta-lactam antibiotics on gram-negative bacteria: Initial killing, morphology and post-antibiotic effect. Scand J Infect Dis Suppl. 1991;74:118–23.

Kuenzi B, Segessenmann C, Gerber AU. Postantibiotic effect of roxithromycin, erythromycin, and clindamycin against selected gram-positive bacteria and Haemophilus influenzae. J Antimicrob Chemother. 1987;20(Suppl. B):39–46.

Isaksson B, Hanberger H, Maller R, et al. The postantibiotic effect of amikacin alone and in combination with piperacillin on gram-negative bacteria. Scand J Infect Dis Suppl. 1991;74:129–32.

Fuursted K. Comparative killing activity and postantibiotic effect of streptomycin combined with ampicillin, ciprofloxacin, imipenem, piperacillin or vancomycin against strains of Streptococcus faecalis and Streptococcus faecium. Chemotherapy. 1988;34:229–34.

Fuursted K. Postexposure factors influencing the duration of postantibiotic effect: significance of temperature, pH, cations, and oxygen tension. Antimicrob Agents Chemother. 1997;41:1693–6.

Gudmundsson A, Erlendsdottir H, Gottfredsson M, et al. Impact of pH and cationic supplementation on in vitro postantibiotic effect. Antimicrob Agents Chemother. 1991;35:2617–24.

Gudmundsson S, Erlensdottir H, Gottfredsson M, et al. The postantibiotic effect induced by antimicrobial combinations. Scand J Infect Dis Suppl. 1991;74:80–93.

Odenholt-Tornqvist I. Pharmacodynamics of beta-lactam antibiotics: studies on the paradoxical and postantibiotic effects in vitro and in an animal model. Scand J Infect Dis Suppl. 1989;58:1–55.

Holm SE, Tornqvist IO, Cars O. Paradoxical effects of antibiotics. Scand J Infect Dis Suppl. 1991; Suppl. 74: 113–7.

Eagle H, Musselman AD. The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentration against certain organisms. J Exp Med. 1948;88:99–131.

Piddock LJ, Walters RN, Diver JM. Correlation of quinolone MIC and inhibition of DNA, RNA, and protein synthesis and induction of the SOS response in Escherichia coli. Antimicrob Agents Chemother. 1990;34:2331–6.

Stratton CW, Liu C, Ratner HB, et al. Bactericidal activity of daptomycin (LY146032) compared with those of ciprofloxacin, vancomycin, and ampicillin against enterococci as determined by kill-kinetic studies. Antimicrob Agents Chemother. 1987;31:1014–6.

Gaillard JL, Silly C, Masne AL, et al. Cerebrospinal fluid penetration of amikacin in children with community-acquired bacterial meningitis. Antimicrob Agents Chemother. 1995;39(1):253–5.

Yogev R, Kolling WM. Intraventricular levels of amikacin after intravenous administration. Antimicrob Agents Chemother. 1981;20(5):583–6.

Allegaert K, Scheers I, Adams E. Cerebrospinal fluid compartmental pharmacokinetics of amikacin in neonates. Antimicrob Agents Chemother. 2008;52(6):1934–9.

Trujillo H, Salgado H, Uribe A, et al. Amikacin concentration in the cerebrospinal fluid of children with acute bacterial meningitis. J Int Med Res. 1979;7:45–51.

Pickering LK, Ericsson CD, Ruiz-Palacious G, et al. Intraventricular and parenteral gentamicin therapy for ventriculitis in children. Am J Dis Child. 1978;132:480–3.

Chang MJ, Escobedo M, Anderson DC, et al. Kanamycin and gentamicin treatment of neonatal sepsis and meningitis. Pediatrics. 1975;56(5):695–9.

Newman RL, Holt RJ. Gentamicin in pediatrics. I: report on intrathecal gentamicin. J Infect Dis. 1971;124(Suppl.):S254–6.

Tessin I, Trollfors B, Thiringer K, et al. Concentrations of ceftazidime, tobramycin and ampicillin in the cerebrospinal fluid newborn infants. Eur J Pediatr. 1989;148:679–81.

Masvosva P, Buckingham SC, Einhaus, et al. Intraventricular and intravenous tobramycin with ceftazidime for ventriculitis secondary to pseudomonas aeruginosa. J Pediatr Pharmacol Ther. 2003;8:137–43.

Azimi PH, Janner D, Berne P, et al. Concentrations of procaine and aqueous penicillin in the cerebrospinal fluid of infants treated for congenital syphilis. J Pediatr. 1994;124:649–53.

Bernard B, Tinsley L, Mapp J. Pharmacokinetics of aqueous penicillins in cerebrospinal fluid of neonates [abstract]. Pediatr Res. 1978;12:402.

Speer ME, Mason EO, Scharnberg JT. Cerebrospinal fluid concentrations of aqueous procaine penicillin g in the neonate. Pediatrics. 1981;67(3):387–8.

Speer ME, Taber LH, Clark DB, et al. Cerebrospinal fluid levels of benzathine penicillin G in the neonate. J Pediatr. 1977;91(6):996–7.

Barrett FF, Eardley WA, Yow MD, et al. Ampicillin in the treatment of acute suppurative meningitis. J Pediatr. 1966;69(3):343–53.

Foulds G, McBride TJ, Knirsch AK, et al. Penetration of sulbactam and ampicillin into cerebrospinal fluid of infants and young children with meningitis. Antimicrob Agents Chemother. 1987;31(11):1703–5.

Rodriguez WJ, Khan WN, Puig J, et al. Sulbactam/ampicillin vs. chloramphenicol/ampicillin for the treatment of meningitis in infants and children. Rev Infect Dis. 1986;8(5):S620–9.

Craft JC, Feldman WE, Nelson JD. Clinicopharmacological evaluation of amoxicillin and probenecid against bacterial meningitis. Antimicrob Agents Chemother. 1979;16(3):346–52.

Nolan CM, Chalhub EG, Nash DG, et al. Treatment of bacterial meningitis with intravenous amoxicillin. Antimicrob Agents Chemother. 1979;16(2):171–5.

Strausbaugh LJ. Penetration of amoxicillin into the cerebrospinal fluid. Antimicrob Agents Chemother. 1978;14(6):899–902.

Nahata MC, Fan-Harvard P, Kosnik EJ, et al. Pharmacokinetics and cerebrospinal fluid concentration of nafcillin in pediatric patients undergoing cerebrospinal fluid shunt placement. Chemotherapy. 1990;36(2):98–102.

Yogev R, Schultz WE, Rosenman SB. Penetrance of nafcillin into human ventricular fluid: correlation with ventricular pleocytosis and glucose levels. Antimicrob Agents Chemother. 1981;19(4):545–8.

Placek M, Whitelaw A, Want S, et al. Piperacillin in early neonatal infection. Arch Dis Child. 1983;58:1006–9.

Thirumoorthi MC, Asmar BI, Buckley JA, et al. Pharmacokinetics of intravenously administered piperacillin in preadolescent children. J Pediatr. 1983;102(6):941–6.

Kuzemko JA, Walker SR. Cefuroxime plasma and CSF levels in children with meningitis. Arch Dis Child. 1979;54:235–6.

Renlund M, Pettay O. Pharmacokinetics and clinical efficacy of cefuroxime in the newborn period. Proc R Soc Med. 1977;70(9):179–82.

Chadwick EG, Yogev R, Shulman ST, et al. Single-dose ceftriaxone pharmacokinetics in pediatric patients with central nervous system infections. J Pediatr. 1983;103(1):141–5.

Steele RW, Eyre LB, Bradsher RW. Pharmacokinetics of ceftriaxone in pediatric patients with meningitis. Antimicrob Agents Chemother. 1983;23(2):191–4.

Del Rio M, McCracken GH, Nelson JD, et al. Pharmacokinetics and cerebrospinal fluid bactericidal activity of ceftriaxone in the treatment of pediatric patients with bacterial meningitis. Antimicrob Agents Chemother. 1982;22(4):622–7.

Goldwater PN. Cefotaxime and ceftriaxone cerebrospinal fluid levels during treatment of bacterial meningitis in children. Int J Antimicrob Agents. 2005;26(5):408–11.

Klugman KP, Friedland IR, Bradley JS. Bactericidal activity against cephalosporin resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother. 1995;39(9):1988–92.

Trang JM, Jacobs RF, Kearns GL, et al. Cefotaxime and desacetylcefotaxime pharmacokinetics in infants and children with meningitis. Antimicrob Agents Chemother. 1985;28(6):791–5.

Asmar BI, Thirumoorthi MC, Buckley JA, et al. Cefotaxime diffusion into cerebrospinal fluid of children with meningitis. Antimicrob Agents Chemother. 1985;28(1):138–40.

Friedland IR, Klugman KP. Cerebrospinal fluid bactericidal activity against cephalosporin resistant Streptococcus pneumoniae in children with meningitis treated with high dosage cefotaxime. Antimicrob Agents Chemother. 1997;41(9):1888–91.

Belohradsky BH, Bruch K, Geiss D, et al. Intravenous cefotaxime in children with bacterial meningitis. Lancet. 1980;1(8159):61–3.

Wells TG, Trang JM, Brown AL, et al. Cefotaxime therapy of bacterial meningitis in children. J Antimicrob Chemother. 1977;14(B):181–9.

Blumer JL, Aronoff SC, Myers CM, et al. Pharmacokinetics and cerebrospinal fluid penetration of ceftazidime in children with meningitis. Dev Pharmacol Ther. 1985;8(4):219–31.

Nahata MC, Kohibrenner VM, Barson WJ. Pharmacokinetics and cerebrospinal fluid concentrations of cefixime in infants and young children. Chemotherapy. 1993;39(1):1–5.

Saez-Llorens X, Castano E, Garcia R, et al. Prospective randomized comparison of cefepime and cefotaxime for treatment of bacterial meningitis in infants and children. Antimicrob Agents Chemother. 1995;39(4):937–40.

Ellis J, Ribera L, Reyes G, et al. Cefepime cerebrospinal fluid concentrations in neonatal bacterial meningitis. Ann Pharmacother. 2007;41:900–1.

Odio CM, Puig JR, Feris JM, et al. Prospective, randomized, investigator-blinded study of the efficacy and safety of meropenem vs. cefotaxime therapy in bacterial meningitis in children. Pediatr Infect Dis J. 1999;18(7):581–90.

Wong VK, Wright HT, Ross LA, et al. Imipenem/cilastatin treatment of bacterial meningitis in children. Pediatr Infect Dis J. 1991;10(2):122–5.

Jacobs RF, Kearns GL, Brown AL, et al. Cerebrospinal fluid penetration of imipenem and cilastatin (primaxin) in children with central nervous system infections. Antimicrob Agents Chemother. 1986;29(4):670–4.

Stutman HR, Marks MI, Swabb EA. Single-dose pharmacokinetics of aztreonam in pediatric patients. Antimicrob Agents Chemother. 1984;26(2):196–9.

Friedman CA, Lovejoy FC, Smith AL. Chloramphenicol disposition in infants and children. J Pediatr. 1979;95(6):1071–7.

Kelley RS, Hunt AD, Tashman SG. Studies on the absorption and distribution of chloramphenicol. Pediatrics. 1951;8:362–7.

Stanley TV, Balakrishnan V. Rifampicin in neonatal ventriculitis. Aust Pediatr J. 1982;18:200–1.

Llorens J, Lobato A, Ola T. The passage of fosfomycin into the cerebrospinal fluid in children’s meningitis. Chemotherapy. 1977;23(Suppl. 1):189–95.

Yogev R, Damle B, Levey G, et al. Pharmacokinetics and distribution of linezolid in cerebrospinal fluid in children and adolescents. Pediatr Infect Dis J. 2010;29:827–30.

Warner JP, Perkins RL, Cordero L. Metronidazole therapy of anaerobic bacteremia, meningitis and brain abscess. Arch Intern Med. 1979;138:167–9.

Mahanjan M, Rohatigi D, Talwar V, et al. Serum and cerebrospinal fluid concentrations of rifampicin at two dose levels in children with tuberculous meningitis. J Commun Dis. 1997;29(3):269–74.

Ninni A, Della Cava F, Vitale L. La rifampicina nella terapia della meningite tubercolare. Riforma Med. 1971;85:1349–51.

Curci G, Della Cava F, Vitale L. On the distribution between the blood and cerebrospinal fluid of rifamycin AMP [in Italian]. Minerva Med. 1969;60(48):2399–402.

De Raultin de la Roy Y, Hoppeler A, Creusot G, et al. Rifampicin levels in the serum and cerebrospinal fluid in children [in French]. Arch Franç Péd. 1974;31:477–88.

Nahata MC, Fan-Harvard P, Bartkowski HM, et al. Pharmacokinetics, cerebrospinal fluid concentration and safety of intravenous rifampin in pediatric patients undergoing shunt placements. Eur J Clin Pharmacol. 1990;38:515–7.

Ardati KO, Thirumoorthi MC, Dajani AS. Intravenous trimethoprim-sulfamethoxazole in the treatment of serious infections in children. J Pediatr. 1979;95(5 pt 1):801–6.

Jorgenson L, Reiter PD, Freeman JE. Vancomycin disposition and penetration into ventricular fluid of central nervous system following intravenous therapy in patients with cerebrospinal devices. Pediatr Neurosurg. 2007;43:449–55.

Fan-Havard P, Nahata MC, Bartkowski MH, et al. Pharmacokinetics and cerebrospinal fluid concentration of vancomycin in pediatric patients undergoing CSF shunt placement. Chemotherapy. 1990;36(2):103–8.

Reiter PD, Doron MW. Vancomycin cerebrospinal fluid concentration after intravenous administration in premature infants. J Perinatol. 1996;16(5):331–4.

Schaad UB, Stoeckel K. Single-dose pharmacokinetics of ceftriaxone in infants and young children. Antimicrob Agents Chemother. 1982;21(2):248–53.

Bafeltowska JJ, Buszman E, Mandat KM, et al. Therapeutic vancomycin monitoring in children with hydrocephalus during treatment of shunt infections. Surg Neurol. 2004;62(5):142–50.

Nava-Ocampo AA, Mojica-Madera JA, Villanueva-Garcia D, et al. Antimicrobial therapy and local toxicity of intraventricular administration of vancomycin in a neonate with ventriculitis. Ther Drug Monit. 2006;28:474–6.

Pau AK, Smego RA, Fisher MA. Intraventricular vancomycin: observations of tolerance and pharmacokinetics in two infants with ventricular shunt infections. Pediatr Infect Dis. 1986;5(1):93–6.

Pellegrino ED, Petrik FG, Horton R. The treatment of tuberculous meningitis in infants with streptomycin and isonicotinic acid hydrazide (isoniazid): a preliminary report of six patients under the age of two years treated without intrathecal medication. Dis Chest. 1954;26:146–65.

Donald PR, Gent WL, Seifart HI, et al. Cerebrospinal fluid concentrations in children with tuberculous meningitis: the influence of dosage and acetylation status. Pediatrics. 1992;89(2):247–50.

Donald PR, Seifart H. Cerebrospinal fluid pyrazinamide concentration in children with tuberculous meningitis. Pediatr Infec Dis J. 1988;7:469–71.

Smith AL, Daum RS, Siber GR, et al. Gentamicin penetration into cerebrospinal fluid in experimental Haemophilis influenza meningitis. Antimicrob Agents Chemother. 1988;32(7):1034–9.

Kinsman SL, Johnston MV. Hydrocephalus. In: Kliegman RM, Stanton BF, St. Geme JW, et al., editors. Nelson textbook of pediatrics. Philadelphia: Saunders; 2011. p. 2008–11.

Goldstein SL, Kaplan SL, Feigin RD. Penicillin update. Pediatr Rev. 1995;16:83–90.

Dacey RG, Sande MA. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicro Agents Chemother. 1974;6(4):437–41.

Acar JF, Goldstein FW, Kitzis MD. Susceptibility survey of piperacillin alone and in the presence of tazobactam. J Antimicrob Chemother. 1993;31(Suppl. A):23–8.

Nau R, Kinzig Schippers MK, Sörgel F, et al. Kinetics of piperacillin and tazobactam in ventricular cerebrospinal fluid of hydrocephalic patients. Antimicrob Agents Chemother. 1997;41(5):987–91.

Lutsar I, Friedland IR. Pharmacokinetics and pharmacodynamics of cephalosporins in cerebrospinal fluid. Clin Pharmacokinet. 2000;39(5):335–43.

Schaad UB, Suter S, Gianella-Borradori A, et al. A comparison of ceftriaxone and cefuroxime for the treatment of bacterial meningitis in children. N Engl J Med. 1990;322(3):141–7.

Blumer JL. Pharmacokinetic determinants of carbapenem therapy in neonates and children. Pediatr Infect Dis J. 1996;15(8):733–7.

Singh J, Burr B, Stringham D, et al. Commonly used antibacterial and antifungal agents for hospitalized pediatric patients: implications for therapy with an emphasis on clinical pharmacokinetics. Pediatric Drugs. 2001;3(10):733–61.

Wiseman LR, Wagstaff AJ, Brogden RN, et al. Meropenem: a review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1995;68(4):163–4.

Balbi HJ. Chloramphenicol: a review. Pediatr Rev. 2004;29(8):284–8.

Gatti G, Malena M, Casazza R, et al. Penetration of clindamycin and its metabolite n-demethylclindamycin into cerebrospinal fluid following intravenous infusion of clindamycin phosphate in patients with AIDS. Antimicrob Agents Chemother. 1998;42(11):3014–7.

Picardi JL, Lewis PH, Tan JS, et al. Clindamycin concentrations in the central nervous system of primates before and after head trauma. J Neurosurg. 1975;43:717–20.

Lee DH, Palermo B, Chowdhury M. Successful treatment of methicillin-resistance Staphylococcus aureus meningitis with daptomycin. Clin Infect Dis. 2008;47:588–90.

Riser MS, Bland CM, Rudisill CN, et al. Cerebrospinal fluid penetration of high-dose daptomycin in suspected staphylococcus aureus meningitis. Ann Pharmacother. 2010;44(11):1832–5.

Gerber P, Stucki A, Acosta F, et al. Daptomycin is more efficacious than vancomycin against a methicillin-susceptible Staphylococcus aureus in experimental meningitis. J Antimicrob Chemother. 2006;57:720–3.

Kühnen E, Pfeifer G, Frenkel C. Penetration of fosfomycin into cerebrospinal fluid across non-inflamed and inflamed meninges. Infection. 1987;15(6):422–4.

Levaquin® (levofloxacin) film-coated tablets [package insert]. Titusville: Janssen Pharmaceuticals, Inc.; 2011.

Scotton PG, Giobbia M, Baraldo M, et al. Cerebrospinal fluid penetration of levofloxacin in patients with spontaneous acute bacterial meningitis. Clin Infect Dis. 2001;33:e109–11.

Ciccotelli W, Poutanen S, Morris S, et al. A new twist on an old problem: a case of pediatric meningitis caused by multidrug-resistant Streptococcus pneumoniae serotype 19A. Can Commun Dis Rep. 2008;34(11):1–6.

Esposito S, Tagliabue C, Bosis S, et al. Levofloxacin for the treatment of mycoplasma pneumonia-associated meningoencephalitis in childhood. Int J Antimicrob Agents. 2011;37(5):472–5.

Milstone AM, Dick J, Carson B, et al. Cerebrospinal fluid penetration and bacteriostatic activity of linezolid against Enterococcus faecalis in a child with a ventriculoperitoneal shunt infection. Pediatr Neurosurg. 2007;43(5):406–9.

Yilmaz A, Dalgic N, Müslüman M, et al. Linezolid treatment of shunt-related cerebrospinal fluid infections in children. J Neurosurg Pediatrics. 2010;5:443–8.

Jaruratanasirikul A, Hortiwakul R, Tantisarasart T, et al. Distribution of azithromycin into brain tissue, cerebrospinal fluid and aqueous humor of the eye. Antimicrob Agents Chemother. 1996;40(3):825–6.

Jokipii AM, Myliyia VV, Hokkanen E, et al. Penetration of the blood brain barrier by metronidazole and tinidazole. J Antimicrob Chemother. 1977;3(3):239–45.

Jokipii AM, Jokipii L. Cerebrospinal fluid concentrations of metronidazole, tinadole and orindazole in rabbits. Infection. 1980;8(3):101–3.

Kusumi RK, Plouffe JF, Wyatt RH, et al. Central nervous system toxicity associated with metronidazole therapy. Ann Intern Med. 1980;93(1):59–60.

Ralph ED, Clarke JT, Libke RD, et al. Pharmacokinetics of metronidazole as determined by bioassay. Antimicrob Agents Chemother. 1974;6(6):691–6.

Asmar BI, Magbool S, Dahant AS. Hematologic abnormalities after oral trimethoprim-sulfamethoxazole therapy in children. Am J Dis Child. 1981;135(12):1100–3.

Lewin EB, Klein JO, Finland M. Trimethoprim-sulfamethoxazole: absorption, excretion, and toxicity in six children. J Infect Dis. 1973;128(Suppl.):618–21.

Shwachman H, Fekete E, Kulczycki LL, et al. The effect of long-term antibiotic therapy in a patient with cystic fibrosis of the pancreas. Antibiot Annu. 1958;59:692–9.

Wallman IS, Hilton HB. Teeth pigmented by tetracycline. Lancet. 1962;1:827–9.

Porter PJ, Sweeney EA, Golan H, et al. Controlled study of the effect of prenatal tetracycline on primary dentition. Antimicrob Agents Chemother. 1965;5:668–71.

Yim CW, Flynn NM, Fitzgerald FT. Penetration of oral doxycycline into the cerebrospinal fluid of patients with latent or neurosyphilis. Antimicrob Agents Chemother. 1985;28(2):347–8.

Dotevall L, Hagberg L. Penetration of doxycycline into cerebrospinal fluid in patients treated for suspected Lyme neuroborreliosis. Antimicrob Agents Chemother. 1989;33(7):1078–80.