Pharmacokinetics and transcriptional effects of the anti-salmon lice drug emamectin benzoate in Atlantic salmon (Salmo salar L.)
Tóm tắt
Emamectin benzoate (EB) is a dominating pharmaceutical drug used for the treatment and control of infections by sea lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar L). Fish with an initial mean weight of 132 g were experimentally medicated by a standard seven-day EB treatment, and the concentrations of drug in liver, muscle and skin were examined. To investigate how EB affects Atlantic salmon transcription in liver, tissues were assessed by microarray and qPCR at 7, 14 and 35 days after the initiation of medication. The pharmacokinetic examination revealed highest EB concentrations in all three tissues at day 14, seven days after the end of the medication period. Only modest effects were seen on the transcriptional levels in liver, with small fold-change alterations in transcription throughout the experimental period. Gene set enrichment analysis (GSEA) indicated that EB treatment induced oxidative stress at day 7 and inflammation at day 14. The qPCR examinations showed that medication by EB significantly increased the transcription of both HSP70 and glutathione-S-transferase (GST) in liver during a period of 35 days, compared to un-treated fish, possibly via activation of enzymes involved in phase II conjugation of metabolism in the liver. This study has shown that a standard seven-day EB treatment has only a modest effect on the transcription of genes in liver of Atlantic salmon. Based on GSEA, the medication seems to have produced a temporary oxidative stress response that might have affected protein stability and folding, followed by a secondary inflammatory response.
Tài liệu tham khảo
MacKinnon BM: Sea lice: A review. World Aquaculture. 1997, 28: 5-10.
Johannessen A: Early stages of Lepeophtheirus salmonis (Copepoda:Caligidae). Sarsia. 1978, 63: 169-176.
Tully O, Nolan DT: A review of the population biology and host-parasite interactions of the sea louse Lepeophteirus salmonis (Copepoda: Caligidae). Parasitology. 2002, 124: S165-S182.
Dawson LHJ, Pike AW, Houlihan DF, McVicar AH: Changes in physiological parameters and feeding behaviour of Atlantic salmon, Salmo salar, infected with sea lice, Lepeophtheirus salmonis. Dis Aquat Organ. 1999, 35 (2): 89-99.
Stone J, Sutherland IH, Sommerville C, Richards RH, Endris RG: The duration of efficacy following oral treatment with emamectin benzoate against infestations of sea lice, Lepeophtheirus salmonis (Kroyer), in Atlantic salmon Salmo salar L. J Fish Dis. 2000, 23 (3): 185-192.
Roy WJ, Gillan N, Crouch L, Parker R, Rodger H, Endris R: Depletion of emamectin residues following oral administration to rainbow trout, Oncorhynchus mykiss. Aquaculture. 2006, 259 (1–4): 6-16.
Roberts TR, Hutson DH: Metabolic pathways of agrochemicals. 1999, London: The Royal Society of Chemistry; London
Leibee GL, Jansson RK, Neussly G, Taylor JL: Efficacy of emamectin benzoate and Bacillus thuringiensis at controlling diamondback moth (Lepidoptera: Plutellidae) population on cabbage in Florida. Florida Entomol. 1995, 78: 82-96.
Kim-Kang H, Bova A, Crouch LS, Wislocki PG, Robinson RA, Wu J: Tissue distribution, metabolism, and residue depletion study in Atlantic salmon following administration of 3H-emamectin benzoate. J Agric Food Chem. 2004, 52: 2108-2118.
Roy WJ, Sutherland IH, Rodger HDM, Varma KJ: Tolerance of Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), to emamectin benzoate, a new orally administered treatment for sea lice. Aquaculture. 2000, 184 (1–2): 19-29.
von Schalburg KR, Rise ML, Cooper GA, Brown GD, Gibbs RA, Nelson CC, Davidson WS, Koop BF: Fish and chips: Various methodologies demonstrate utility of a 16,006-gene salmonid microarray. BMC Genomics. 2005, 6: 126-
Sevatdal S, Magnusson Å, Ingebriktsen K, Haldorsen R, Horsberg TE: Distribution of emamectin benzoate in Atlantic salmon (Salmo salar L.). J Vet Pharmacol Ther. 2005, 28 (1): 101-107.
Anonymous: General requirements for the competence of testing and calibration laboratories. ISO/IEC. 2000, 17025: 1999(E)-
Dysvik B, Jonassen I: J-Express: Exploring gene expression data using Java. Bioinformatics. 2001, 17 (4): 369-370.
Cleveland WS, Devlin SJ: Locally weighted regression: An approach to regression analysis by local fitting. J Am Stat Assoc. 1988, 83: 596-610.
Bo TH, Dysvik B, Jonassen I: LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 2004, 32 (3): e34-
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001, 98 (9): 5116-5121.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102 (43): 15545-15550.
Gene Set Enrichment Analysis. [http://www.broad.mit.edu/gsea/]
Gene Ontology Consortium. [http://www.geneontology.org]
Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7): research0034-
Olsvik PA, Lie KK, Jordal AE, Nilsen TO, Hordvik I: Evaluation of potential reference genes in real time RT-PCR studies of Atlantic salmon. BMC Mol Biol. 2005, 6: 21-
Muller PY, Janovjak H, Miserez AR, Dobbie Z: Processing of gene expression data generated by quantitative real-time RT-PCR. BioTechniques. 2002, 32 (6): 1372-1379.
Kim SY, Volsky DJ: PAGE: Parametric Analysis of Gene Set Enrichment. BMC Bioinformatics. 2005, 6: 144-
Goksøyr A: Use of cytochrome P450 1A (CYP1A) in fish as a biomarker of aquatic pollution. Arch Toxicol Suppl. 1995, 17: 80-95.
Shaikh B, Rummel N, Gieseker C, Chu P-S, Reimschuessel R: Residue depletion of tritium-labelled ivermectine in rainbow trout following oral administration. Aquaculture. 2007, 272: 192-198.
Hayano T, Kikuchi M: Molecular cloning of the cDNA encoding a novel protein disulfide isomerase-related protein (PDIR). FEBS Lett. 1995, 372 (2–3): 210-214.
Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D: Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem. 2004, 279 (21): 21749-21758.
Iwama GK, Thomas PT, Forsyth RB, Vijayan MM: Heat shock protein expression in fish. Rev Fish Biol Fish. 1998, 8: 35-56.
Smith TR, Tremblay GC, Bradley TM: Characterization of the heat shock protein response of Atlantic salmon (Salmo salar). Fish Physiol Biochem. 1999, 20: 279-292.
Wegele H, Muller L, Buchner J: Hsp70 and Hsp90 – a relay team for protein folding. Rev Physiol Biochem Pharmacol. 2004, 151: 1-44.
Basu N, Kennedy CJ, Iwama GK: The effects of stress on the association between HSP70 and the glucocorticoid receptor in rainbow trout. Comp Biochem Physiol A Mol Integr Physiol. 2003, 134 (3): 655-663.
Trute M, Gallis B, Doneanu C, Shaffer S, Goodlett D, Gallagher E: Characterization of hepatic glutathione S-transferases in coho salmon (Oncorhynchus kisutch). Aquat Toxicol. 2007, 81 (2): 126-136.
Olsvik PA, Lie KK, Saele O, Sanden M: Spatial transcription of CYP1A in fish liver. BMC Physiol. 2007, 7: 12-
Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S, Nishimoto T: Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol. 1993, 13 (10): 6367-6374.
Smith WL: The eicosanoids and their biochemical mechanism of action. Biochem J. 1989, 259: 315-324.
Reilly MP, Lawson JA, FitzGerald GA: Eicosanoids and isoeicosanoids: Indices of cellular function and oxidant stress. J Nutr. 1998, 128: 434S-438S.
Morey JS, Ryan JC, Dolah FMV: Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online. 2006, 8: 175-193.