Mô hình dược động học và dược lực học của sarafloxacin chống lại vi khuẩn Escherichia coli gây bệnh cho gia cầm ở vịt muscovy

Springer Science and Business Media LLC - Tập 13 - Trang 1-8 - 2017
Yang Yu1,2,3, Yu Feng Zhou1,2,3, Jian Sun1,2,3, Wei Shi1,3, Xiao Ping Liao1,2,3, Ya Hong Liu1,2,3,4
1National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
2Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
3Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
4College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China

Tóm tắt

Nghiên cứu này tập trung vào việc tận dụng mô hình dược động học/dược lực học (PK/PD) để tối ưu hóa liệu trình liều điều trị của sarafloxacin đối với chủng Escherichia coli O78 gây bệnh ở gia cầm trong giống vịt muscovy. Nghiên cứu PK/PD ex vivo về sarafloxacin đã được thực hiện trên vịt muscovy sau khi tiêm tĩnh mạch (i.v.) và uống (p.o.) với liều đơn 10 mg/kg trọng lượng cơ thể (BW). Các mẫu huyết thanh đã được phân tích bằng phương pháp sắc ký lỏng hiệu năng cao ngược pha (RP-HPLC) sử dụng phương pháp phát hiện huỳnh quang. Dữ liệu PK của sarafloxacin đã được phân tích bằng phương pháp phi khoang sử dụng phần mềm Winnonlin. Các phép tính diện tích dưới đường cong nồng độ-theo thời gian (AUC0-24h) lần lượt là 8.57 ± 0.59 và 8.37 ± 0.29 μg·h/ml sau khi tiêm tĩnh mạch và đường uống. Thời gian bán hủy (t1/2β) là 6.11 ± 0.99 h và 8.21 ± 0.64 h cho tiêm tĩnh mạch và đường uống, tương ứng. Độ gắn kết protein huyết tương trung bình của sarafloxacin in vitro là 39.3%. Sử dụng mô hình sigmoid Emax, các giá trị trung bình của AUC0-24h/MIC cần thiết cho tác dụng ức chế vi khuẩn, diệt khuẩn và tiêu diệt vi khuẩn lần lượt là 25.4, 40.6, và 94.4 h. Sarafloxacin được tiêm với liều 10 mg/kg có thể không đủ để điều trị nhiễm trùng E. coli O78 với MIC bằng hoặc lớn hơn 0.125 μg/ml. Hơn nữa, cần các liều sarafloxacin cao hơn để giảm thiểu kháng sinh, xem xét lý thuyết MPC.

Từ khóa


Tài liệu tham khảo

Balaje RM, Sidhu PK, Kaur G, Rampal S. Mutant prevention concentration and PK-PD relationships of enrofloxacin for Pasteurella multocida in buffalo calves. Res Vet Sci. 2013;95(3):1114–24. Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother. 2003;52(1):11–7. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10. quiz 11-12. Drusano GL. Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin Infect Dis. 2003;36 Suppl 1:S42–50. Toutain PL, del Castillo JR, Bousquet-Melou A. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Res Vet Sci. 2002;73(2):105–14. Liang B, Bai N, Cai Y, Wang R, Drlica K, Zhao X. Mutant prevention concentration-based pharmacokinetic/pharmacodynamic indices as dosing targets for suppressing the enrichment of levofloxacin-resistant subpopulations of Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(5):2409–12. Xu L, Wang H, Yang X, Lu L. Integrated pharmacokinetics/pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance. BMC Vet Res. 2013;9:126. Zeng T, Jiang X, Li J, Wang D, Li G, Lu L, Wang G. Comparative proteomic analysis of the hepatic response to heat stress in Muscovy and Pekin ducks: insight into thermal tolerance related to energy metabolism. PLoS One. 2013;8(10):e76917. Zhuang QY, Wang SC, Li JP, Liu D, Liu S, Jiang WM, Chen JM. A clinical survey of common avian infectious diseases in China. Avian Dis. 2014;58(2):297–302. La Ragione RM, Sayers AR, Woodward MJ. The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78∶K80 in the day-old-chick model. Epidemiol Infect. 2000;124(3):351–363. Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia coli (APEC). Vet Res. 1999;30(2-3):299–316. Ewers C, Janssen T, Wieler LH. Avian pathogenic Escherichia coli (APEC). Berl Munch Tierarztl Wochenschr. 2003;116(9-10):381–95. Lutful Kabir SM. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health. 2010;7(1):89–114. Jones RN, Erwin ME. In vitro susceptibility testing and quality control parameters for sarafloxacin (a-56620): a fluoroquinolone used for treatment and control of colibacillosis in poultry. Quality control study group. Diagn Microbiol Infect Dis. 1998;32(1):55–64. Ding HZ, Zeng ZL, Fung KF, Chen ZL, Qiao GL. Pharmacokinetics of sarafloxacin in pigs and broilers following intravenous, intramuscular, and oral single-dose applications. J Vet Pharmacol Ther. 2001;24(5):303–8. Aliabadi FS, Lees P. Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of marbofloxacin in calf serum, exudate and transudate. J Vet Pharmacol Ther. 2002;25(3):161–74. Parshikov IA, Freeman JP, Lay Jr JO, Moody JD, Williams AJ, Beger RD, Sutherland JB. Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol. 2001;26(3):140–4. Haritova AM, Rusenova NV, Parvanov PR, Lashev LD, Fink-Gremmels J. Pharmacokinetic-pharmacodynamic modelling of danofloxacin in turkeys. Vet Res Commun. 2006;30(7):775–89. Walker RD. The use of fluoroquinolones for companion animal antimicrobial therapy. Aust Vet J. 2000;78(2):84–90. Products TEAftEoM, Unit VME: Committee for veterinary medicinal products saraflocaxin (Salmonidae) Summary Report (2). 1998, EMEA/MRL/349/98-FINAL February 1998. The European Agency for the Evaluation of Medicinal Products Veterinary Medicines and Inspections. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/veterinary/000031/WC500062807.pdf. Accessed 14 Dec 2008. Ho SP, Cheng CF, Wang WS. Pharmacokinetic and depletion studies of sarafloxacin after oral administration to eel (Anguilla anguilla). J Vet Med Sci. 1999;61(5):459–63. Institute of Laboratory Animal Research CoLS, Council. NR. Guide for the care and use of laboratory animals. Washington, DC: National Academy Press; 1996. Illambas J, Potter T, Cheng Z, Rycroft A, Fishwick J, Lees P. Pharmacodynamics of marbofloxacin for calf pneumonia pathogens. Res Vet Sci. 2013;94(3):675–81. CLSI: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals; Approved Standard-Fourth Edition and Supplement, VET01A4E and VET01S2E PA: Clinical and Laboratory Standards Institute 2013 Marcusson LL, Olofsson SK, Komp Lindgren P, Cars O, Hughes D. Mutant prevention concentrations of ciprofloxacin for urinary tract infection isolates of Escherichia coli. J Antimicrob Chemother. 2005;55(6):938–43. Elias G, Lee JS, Hwang MH, Park YS, Cho KH, Kim YH, Park SC. Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of orbifloxacin in Korean Hanwoo cattle. J Vet Pharmacol Ther. 2009;32(3):219–28. Gebru E, Lee JS, Chang ZQ, Hwang MH, Cheng H, Park SC. Integration of pharmacokinetic and pharmacodynamic indices of orbifloxacin in beagle dogs after a single intravenous and intramuscular administration. Antimicrob Agents Chemother. 2009;53(7):3024–9. Linde HJ, Lehn N. Mutant prevention concentration of nalidixic acid, ciprofloxacin, clinafloxacin, levofloxacin, norfloxacin, ofloxacin, sparfloxacin or trovafloxacin for Escherichia coli under different growth conditions. J Antimicrob Chemother. 2004;53(2):252–7. Yuan L, Wang R, Sun L, Zhu L, Luo X, Sun J, Fang B, Liu Y. Pharmacokinetics of marbofloxacin in Muscovy ducks (Cairina moschata). J Vet Pharmacol Ther. 2011;34(1):82–5. Goudah A, Hasabelnaby S. Pharmacokinetics, plasma protein binding and bioavailability of moxifloxacin in Muscovy ducks after different routes of administration. Res Vet Sci. 2010;88(3):507–11. Lees P, Aliabadi FS. Rationalising dosage regimens of antimicrobial drugs: a pharmacological perspective. J Med Microbiol. 2000;49(11):943–5. Papich MG. Pharmacokinetic-pharmacodynamic (PK-PD) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs. Vet Microbiol. 2014;171(3-4):480–6. Gebru E, Choi MJ, Lee SJ, Damte D, Park SC. Mutant-prevention concentration and mechanism of resistance in clinical isolates and enrofloxacin/marbofloxacin-selected mutants of Escherichia coli of canine origin. J Med Microbiol. 2011;60(Pt 10):1512–22. Ferran A, Dupouy V, Toutain PL, Bousquet-Melou A. Influence of inoculum size on the selection of resistant mutants of Escherichia coli in relation to mutant prevention concentrations of marbofloxacin. Antimicrob Agents Chemother. 2007;51(11):4163–6. Toutain PL, Bousquet-Melou A, Martinez M. AUC/MIC: a PK/PD index for antibiotics with a time dimension or simply a dimensionless scoring factor? J Antimicrob Chemother. 2007;60(6):1185–8.