Phantom Envelopes and $$\mathrm{Ext}$$ -Phantom Covers of Modules
Tóm tắt
We first prove that if a monomorphism is a phantom envelope of a left R-module, then its cokernel is pure-projective; if R is a left coherent ring and an epimorphism is an $$\mathrm{Ext}$$-phantom cover of a left R-module, then its kernel is pure-injective. Second, we characterize several rings such as left FC rings and left semihereditary rings using phantom envelopes and $$\mathrm{Ext}$$-phantom covers of modules.
Tài liệu tham khảo
Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer, New York (1974)
Auslander, M., Smalø, S.: Preprojective modules over Artin algrbras. J. Algebra 66, 61–122 (1980)
Benson, D.: Phantom maps and purity in modular representation theory III. J. Algebra 248, 747–754 (2002)
Benson, D., Gnacadja, PhG: Phantom maps and purity in modular representation theory I. Fundam. Math. 161, 37–91 (1999)
Benson, D., Gnacadja, PhG: Phantom maps and purity in modular representation theory II. Algebras Represent. Theory 4, 395–404 (2001)
Chen, J.L., Ding, N.Q.: A note on existence of envelopes and covers. Bull. Austral. Math. Soc. 54, 383–390 (1996)
Damiano, R.F.: Coflat rings and modules. Pac. J. Math. 81, 349–369 (1979)
Ding, N.Q.: On envelopes with the unique mapping property. Commun. Algebra 24, 1459–1470 (1996)
Ding, N.Q., Chen, J.L.: Relative coherence and preenvelopes. Manuscr. Math. 81, 243–262 (1993)
Enochs, E.E.: Injective and flat covers, envelopes and resolvents. Isr. J. Math. 39, 189–209 (1981)
Enochs, E.E., Jenda, O.M.G.: Relative Homological Algebra. Walter de Gruyter, Berlin (2000)
Enochs, E.E., Oyonarte, L.: Covers, Envelopes and Cotorsion Theories. Nova Science Publishers, New York (2002)
Estrada, S., Guil Asensio, P.A., Ozbek, F.: Covering ideals of morphisms and module representations of the quiver \({\mathbb{A}}_{2}\). J. Pure Appl. Algebra 218, 1953–1963 (2014)
Fu, X.H., Guil Asensio, P.A., Herzog, I., Torrecillas, B.: Ideal approximation theory. Adv. Math. 244, 750–790 (2013)
Fu, X.H., Herzog, I.: Powers of the phantom ideal. Proc. Lond. Math. Soc. 112, 714–752 (2016)
Gnacadja, PhG: Phantom maps in the stable module category. J. Algebra 201, 686–702 (1998)
Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules; GEM 41. Walter de Gruyter, Berlin (2006)
Gupta, R.N.: On \(f\)-injective modules and semihereditary rings. Proc. Natl. Inst. Sci. India Part A 35, 323–328 (1969)
Herzog, I.: The phantom cover of a module. Adv. Math. 215, 220–249 (2007)
Herzog, I.: Contravariant functors on the category of finitely presented modules. Isr. J. Math. 167, 347–410 (2008)
Jain, S.: Flat and \(FP\)-injectivity. Proc. Am. Math. Soc. 41, 437–442 (1973)
Lam, T.Y.: Lectures on Modules and Rings. Springer, New York (1999)
Liu, Q.L., Chen, J.L.: Coherence and generalized morphic property of triangular matrix rings. Commun. Algebra 42, 2788–2799 (2014)
Mao, L.X., Ding, N.Q.: Envelopes and covers by modules of finite \(FP\)-injective and flat dimensions. Commun. Algebra 35, 833–849 (2007)
Mao, L.X.: On covers and envelopes in some functor categories. Commun. Algebra 41, 1655–1684 (2013)
Mao, L.X.: Precovers and preenvelopes by phantom and Ext-phantom morphisms. Commun. Algebra 44, 1704–1721 (2016)
Mao, L.X.: Higher phantom morphisms with respect to a subfunctor of Ext. Algebras Represent. Theory 22, 407–424 (2019)
McGibbon, C.A.: Phantom maps. In: James, I.M. (ed.) Handboook of Algebraic Topology, pp. 1209–1257. Elsevier Science B.V, Amsterdam (1995)
Neeman, A.: The Brown representability theorem and phantomless triangulated categories. J. Algebra 151, 118–155 (1992)
Rotman, J.J.: An Introduction to Homological Algebra. Academic Press, New York (1979)
Stenström, B.: Coherent rings and \(FP\)-injective modules. J. Lond. Math. Soc. 2, 323–329 (1970)
Warfield Jr., R.B.: Purity and algebraic compactness for modules. Pac. J. Math. 28, 699–719 (1969)
